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Artificial Intelligence and Operations Research: 
Challenges and Opportunities in Planning and 

Scheduling 

Carla P. Gomes 
Computer Science Department 

Cornell University 
Ithaca, NY 14853 

gomes@cs. Cornell, edu 

1    Introduction 
Both the Artificial Intelligence (AI) community and the Operations Research 
(OR) community are interested in developing techniques for solving hard com- 
binatorial problems, in particular in the domain of planning and scheduling. 
AI approaches encompass a rich collection of knowledge representation for- 
malisms for dealing with a wide variety of real-wo rid problems. Some examples 
are constraint programming representations, logical formalisms, declarative and 
functional programming languages such as Prolog and Lisp, Bayesian models, 
rule-based formalism, etc. The downside of such rich representations is that 
in general they lead to intractable problems, and we therefore often cannot use 
such formalisms for handling realistic size problems. OR, on the other hand, has 
focused on more tractable representations, such as linear programming formu- 
lations. OR based techniques have demonstrated the ability to identify optimal 
and locally optimal solutions for well-defined problem spaces. In general, how- 
ever, OR solutions are restricted to rigid models with limited expressive power. 
AI techniques, on the other hand, provide richer and more flexible represen- 
tations of real-world problems, supporting efficient constraint-based reasoning 
mechanisms as well as mixed initiative frameworks, which allow the human ex- 
pertise to be in the loop. The challenge lies in providing representations that 
are expressive enough to describe real-world problems and at the same time 
guaranteeing good and fast solutions. Figure 1 provides a high-level view of our 
perspective of the integration of AI and OR. 
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Below we present some of the main themes in OR followed by a discussion 
on several topics that, in our opinion, represent opportunities for integration of 
AI and OR techniques. As an appendix to this report we include a few papers 
that elaborate on some of the topics. 

2    Main Themes in Operations Research 

Optimization and Linear Programming 

Traditionally, the Operations Research community has focused on solving 
optimization problems. Linear Programming plays a major role in OR methods. 
Work done by Leonid Kantorovich in 1939 is considered the main precursor 
to Linear Programming (LP). In 1947, George Dantzig developed LP and the 
simplex method, initially conceived to speed up the process of providing a time- 
staged deployment, training and logistical program for military applications.1 

Interestingly, the word "programming" in Linear Programming has nothing to 
do with computer programming, but rather with the notion of "program" as 
used by the military to refer to plans of military operations. The simplex method 
made it possible to consider larger problems in areas as diverse as transportation, 
production, resource allocation, and scheduling problems. 

The main extensions of LP are Integer Programming (IP) and Mixed In- 
teger Programming (MIP) and Stochastic programming. IP and MIP extend 
LP to deal with integrality constraints and are the "bread and butter" of OR. 
Stochastic programming addresses issues dealing with uncertainty. Common 
approaches to solving IP and MIP entail solving several LP's, which are re- 
laxations of the original IP or MIP that provide guidance and tighten bounds 
for branch and bound techniques. Similarly, Stochastic programming entails 
solving several LP's that represent different scenarios in the future — one can 
determine the best course of action in the present by optimizing the expected 
performance for the different scenarios. 

The complexity of LP was not known for a long time. In the 70's, Klee 
and Minty created an example that showed that the simplex method can re- 
quire exponential time. However, despite its worst-case exponential complexity, 
the simplex method generally performs very well in practice. In the late 70's, 
Khachian developed a polynomial-time algorithm for linear programming. On 
practical problems, however, this method was much less efficient than the sim- 
plex method. In 1984, Karmarkar devised an interior point method that is more 
efficient and can outperform the simplex method on certain large problems in- 
stances. Still, the simplex method is often the method of choice. During the 
announcement of the new release of CPLEX at the main OR conference, IN- 

1 Ironically, Dantzig was not considered for the Nobel Prize in Economics for work related 
to the discovery and application of LP. The prize was given to Koopmans and Kantorovich 
for their work applying LP to solve problems in economics. 



FORMS, simplex based methods were shown to be very competitive or even 
outperforming interior point based methods on several benchmarks.2 

Successful solutions of large-scale MIPs require formulations whose LP re- 
laxations give a good approximation to feasible solutions. For instance, it is 
known that the Knapsack problem is relatively easy to solve if using the "right" 
LP formulations whose relaxations are very insightful for a branch and bound 
algorithm. However, some formulations of the Knapsack problem lead to poor 
relaxations of the corresponding LP, in the sense that they do not provide much 
information for a branch and bound algorithm. 

The objective function is very important in OR models. In fact, in a recent 
review of Mathematical Programming, Dantzig (1991) emphasizes that, apart 
from LP and the simplex method, one of his main contributions was the formu- 
lation of an explicit goal or objective function to guide the search for feasible 
solution, instead of ad hoc ground rules. The objective function is essential in 
OR models, for two reasons: On one hand, it provides a criterion for optimiza- 
tion and it guides the search for solutions. Furthermore, it is a way of considering 
soft constraints. OR experts dealing with real-world applications use the ap- 
proach of encoding constraints through the objective function, avoiding the use 
of hard constraints as much as possible. A goal constraint is an objective that 
is desirable but, if necessary, it can be violated. Goal Programming involves 
different techniques to produce solutions involving goal constraints. An exam- 
ple is the use of penalties associated with variables that measure the deviation 
between the desired goal and the actual value. 

The work of Dantzig and Wolfe on solving LP by means of Decomposition 
has had a major impact on solving large-scale problems. In fact, even though 
the simplex method can handle sparse problems with several thousands of rows 
quite comfortably, it does not scale up when it comes to truly huge problems. For 
such problems the simplex method is out of the question and the Dantzig-Wolfe 
decomposition is needed. An example of the application of such decomposition 
methods is column generation techniques. They have been successfully applied, 
e.g. in Airline Crew Scheduling (see e.g., Barnhart et al. 1994). Branch-and- 
price is an example of a column generation technique. 

In a crew scheduling problem sequences of flights (pairings) are assigned to 
crews so that each flight for a specific fleet of airplanes is assigned to exactly one 
crew. Since pairings are subject to complicated rules (safety and contractual 
rules) it would be difficult to express constraints and costs if a direct encoding 
were used.3 Instead, valid pairings are enumerated and the problem is formu- 
lated as a set partioning problem (SPP). In this formulation each column or 
variable corresponds to a pairing and the objective is to partition all of the 
flights into a set of minimum cost pairings. 

The main drawback is that the number of pairings grows exponentially with 
2CPLEX presentation of the new release at Informs, Montreal, 1998. 
3 By direct enco 

assigned to flight j 

3 By direct encoding we mean a formulation with variables Xj3, where Xjj = 1 if crew i is 



the number of flights. For example, Vance (1993) found more than 5 million 
valid pairings in a daily problem with 253 flights. Problems with 1000 flights, a 
typical size for a U.S. domestic carrier, are likely to have billions of pairings. 

The approach used to solve this formidable problem uses Dantzig-Wolfe col- 
umn generation. The LP relaxation of the SPP is solved, but only a subset of 
columns are initially considered. This problem is called the restricted master 
problem. New columns are generated only as needed, and if needed, and based 
on the information provided by the solution to the restricted master problem, 
i.e., the dual prices. These dual prices allow one to determine which flights 
should be included in "good" columns for the master problem. The problem of 
generating new columns is called the subproblem or pricing problem. 

Duality 

Duality plays an important role in OR. The theory of duality is elegantly 
developed in the context of LP. The basic idea is that every problem can be 
considered from a dual perspective — maximizing the profit is equivalent to 
minimizing costs. Every maximization LP problem gives rise to a minimization 
LP problem, its dual. Interestingly, every feasible solution of one problem pro- 
vides a bound on the optimal value of the other problem, and if one of them has 
an optimal solution, so does the other and their optimal values are the same. 
This is what the famous Duality Theorem states, formally proved by Gale, et 
al. (1951). Its notions originated in conversations between Dantzig and von 
Neumann in the fall of 1947. 

The theory of duality is also used to perform sensitivity analysis and para- 
metric analysis, i.e., the study of the impact on the objective function when the 
level of resources (the right hand sides of the linear constraints) vary or when 
the coefficients of the objective function vary. The technique of penalties uses 
sensitivity analysis to tighten bounds during branch-and-bound search. 

Structure 

Another theme in OR is to exploit inherent problem structure. Trans- 
shipment Problems or Network Flow Problems are notable examples of the im- 
portance of exploiting structure. The special structure of these problems allows 
for very efficient (polynomial) algorithms. An interesting aspect of Network 
Flow Problems is that the optimal solution of instances involving only integral 
constraints are guaranteed to be also integer-valued. Many combinatorial prob- 
lems, well beyond cases that deal with physical shipments of some commodity, 
such as scheduling problems, can be efficiently formulated as Network Flow 
Problems. 

Typically, when using OR methods, one starts by categorizing the problem 
into a class of problems for which "good" solution methods have been developed 



such as LP, Network Flow, or 0-1 programming problems. At a second level, in 
general using an automated process, structure is detected using inference meth- 
ods- For example, when solving IP's or MIP's, the derivation of "cutting planes" 
is very important to eliminate parts of the search space that are guaranteed not 
to contain the optimal solution. Cutting planes are linear inequalities that can 
be added to the original formulation of an IP with the guarantee that no inte- 
ger solution will be eliminated, but with the advantage of eliminating fractional 
solutions generated by the linear relaxation of the problem. The addition of cut- 
ting planes leads to tighter relaxations, and therefore their solutions are better 
approximations of the IP's solution. Gomory ( 1963) pioneered this approach, 
showing how to systematically generate "cuts" that lead to an integer solution. 

Related to the approach of exploiting structure is the strategy of decom- 
posing complex problems into simpler problems for which there are good al- 
gorithmic approaches or, at least, relaxed versions of the subproblems can be 
solved using efficient algorithms. Network Flow Problems play an important 
role in decomposition strategies since they represent a large class of problems 
after abstracting away some "details".4 

Decomposition is often used to get tighter bounds for branch-and-bound 
methods. Such an approach is used, for example, by one of the fastest job- 
shop scheduling algorithms (Carlier and Pinson 1990). This algorithm bounds 
its search with Jackson's preemptive schedule algorithm for a single machine. 
Another example is the Knapsack problem. Even though this problem is NP- 
complete, it is relatively easy to solve in practice. It is used, in several ap- 
proaches, for example to solve the generalized machine assignment problem. 

3    Opportunities for Integration of AI/OR 

Solving large real-world scheduling problems has so far been almost exclu- 
sively the domain of operations research, but recent developments in constraint- 
satisfaction techniques have shown that they can be competitive on real-world 
problems. The constraint-satisfaction approach brings a novel perspective to 
planning and scheduling. Constraint-based methods provide a richer repre- 
sentational formalism compared to the traditional OR methods. Furthermore, 
constraint satisfaction techniques have developed powerful inference methods 
that lead to efficient variable domain reductions. 

For example, the constraint programming language ILOG is now being used 
in actual fielded applications, in areas such as manpower and service scheduling, 
airline scheduling, cutting-stock in the steel industry, manufacturing scheduling 

4Unfortunately, Network Flow Algorithms cannot be used when there are global constraints 
on the nodes of the network. An example of a global constraint would state that the amount 
of goods shipped through certain nodes corresponds to 30 % of the total amount of goods 
shipped. 



for the auto industry, supply chain management, etc. Companies such as SAP, 
Peoplesoft, and 12, leading developers of software solutions for managing human 
resources, accounting, materials management, distribution, and manufacturing, 
across different industries, combine different optimization techniques such as 
constraint programming, mathematical programming, and local search methods. 
These new developments have created a unique opportunity to investigate the 
integration of AI, primarily constraint-satisfaction methods, and OR techniques. 
Some key issues are outlined in the following paragraphs. 

Hybrid Solvers 

This is an important emerging area of research combining CSP techniques 
with OR techniques. Work in this area began with CLP(R), Prolog III, and 
Chip, combining constraint satisfaction (CSP) methods with linear program- 
ming. The ILOG system integrates a finite domain propagation solver for dis- 
crete variables with CPLEX, for continuous variables. Promising results have 
been obtained using such hybrid approaches, which allow for more powerful con- 
straint reasoning: consistency checking and domain reduction techniques enforce 
efficient constraint propagation, while linear programming relaxations provide 
infeasibility, or bounds on the objective function. For example, a research team 
at Imperial College reports that only by using a hybrid approach were they able 
to solve to optimality hoist scheduling problems (Rodosek and Wallace 1998). 
These problems could not be solve optimally in the OR literature. McAloon et 
al. (1998) also report similar benefits of using hybrid solvers to solve a multi- 
commodity integer network flow problem of the Dutch Railways which is greatly 
complicated by additional constraints on the coupling and decoupling of trains. 

Duality 

The notion of duality expresses the fact that there are two complementary 
ways of looking at a problem. Duality is a powerful concept that has been 
extensively exploited by the OR community in linear programming. Duality 
can be exploited to solve problems, by considering simultaneously two perspec- 
tives — the primal and dual view of the problem. Such approaches, in general, 
allow for stronger inferences, both in terms of cutting planes as well as vari- 
able domain reductions. Recently there have been several promising results 
in the CSP community using a dual formulation approach (e.g., to solve hard 
timetabling problems, McAloon et al. 1997, Gomes et al. 1998). However, in 
general, duality is not yet well understood for problems involving constraints 
other than inequality constraints. Research in this area, coupled with the study 
of the design of global constraints and good relaxation schemes for primal and 
dual formulations, is very promising. The study of new ways for performing 
sensitivity analysis based on duality is also a promising research area. 



Problem Structure 

In general structured models are easier to understand and compute with. 
The OR community has identified several classes of problems with very a inter- 
esting, tractable, structure. LP, and Network Flow problems are good examples 
of such problems. OR also exploits the structure of problems during inference by 
generating, in generally automatically, "cutting planes", which allow for tighter 
relaxations that are therefore closer to the optimal integer solution. The CSP 
community, on the other hand, has identified the special structure of several 
global constraints that are ubiquitous in several problems, which allow the de- 
velopment of efficient constraint propagation techniques for the reduction of the 
variable domains. 

In general, however, the notion of structure is very hard to define, even 
though we recognize structure when we see it. For example, there is not a 
methodology that shows how to construct good cutting planes. Formalizing 
the notion of structure and understanding its impact in terms of search is a 
big challenge for both AI and OR. AI has made some progresses in this area, 
namely in the study of phase transition phenomena, correlating structural fea- 
tures of problems. For example, in the Satisfiability problem it is known that 
the difficulty of problems depends on the ratio between number of clauses and 
number of variables (Kirkpatrick and Selman 1994). 

In Gomes and Selman (1997) we introduce the Quasigroup Completion prob- 
lem (QCP), a structured framework for studying search methods. Our study 
of QCP reveals that its complexity depends critically on the percentage of 
pre-assigned cells to the initial matrix of the quasigroup. Depending on the 
level of pre-assignment, we can identify different levels of difficulty for the in- 
stances of the QCP problem, namely an under-contrained area (low levels of 
pre-assignment) and an over-constrained area (high levels of pre-assignment) 
where problem instances are relatively easy to solve. The critically constrained 
area corresponds to intermediate levels of pre-assignment of colors to the initial 
quasigroup matrix and those instances tend to be relativley harder to solve. 
(See also Appendix 1 for a description of QCP). 

Recently, Monasson et al. (1999) also showed that random satisfiability in- 
stances that are a mixture of 2-Sat and 3-Sat clauses, the 3-Sat clauses with 
weight p, scale linearly as long as p <= 0.4. Another structural feature that 
Monasson et al. recently formalized is the concept of backbone. The backbone 
of an instance corresponds to the shared structure of all the solutions of a prob- 
lem instance. In other words, the set of variables and corresponding assignments 
that are common in all the solutions of a problem instance is the backbone. 

As a final remark it is important to mention the trade-off between highly 
structured models, which tend to be very specific and therefore fit a narrow class 
of problems, and more unstructured models that are more flexible and therefore 
easier to fit real world problems. 



Local Search 

Local search methods or meta-heuristics are often used to solve challeng- 
ing combinatorial problems. Such methods start with an initial solution, not 
necessarily feasible, and improve upon it by performing small "local" changes. 
One of the earliest applications of local search was to find good solutions for the 
Traveling Salesman Problem (TSP) (Lin (1965) and Lin and Kernighan (1973)). 
Lin and Kernighan showed that by performing successive swaps of cities to an 
arbitrary initial tour of cities, until no such swaps are possible, one can gener- 
ate solutions that are surprisingly close to the shortest possible tour. There are 
several ways of implementing local search methods, depending on the choice of 
the initial solution, types of "local" changes allowed, and feasibility and cost of 
(intermediate) solutions. 

There is a great deal of overlap in research on local search by the AI and 
OR communities, namely in simulated annealing (Kirkpatrick et al. 1983), 
tabu search (Glover 1989), and genetic algorithms (Holland 1975). A recent 
new area of application for local search methods is in solving NP-complete 
decision problems, such as the Boolean satisfiability (SAT) problem. In 1992, 
Selman et al. showed that a greedy local search method, called GSAT, could 
solve instances with up to 700 hundred variables. Currently GSAT and variants 
(e.g., WALKSAT) are among the best methods for SAT, enabling us to solve 
instances with up to 3000 variables (Selman et al. 1994). Closely related work 
in the area of scheduling is the technique of "MinConfiicts" proposed by Minton 
et al. (1992). 

Local search, and mixtures of local and global search strategies have proved 
to be very effective to tackle real world problems, in general beyond the reach 
of pure complete search methods. 

Randomization 

Stochastic strategies have been very successful in the area of local search. 
However, local search procedures are inherently incomplete methods. An emerg- 
ing area of research is the study of Las Vegas algorithms, i.e., randomized 
algorithms that always return a model satisfying the constraints of the search 
problem or prove that no such model exists (Motwani and Raghavan 1995). The 
running time of a Las Vegas style algorithm can vary dramatically on the same 
problem instance. The extreme variance or "unpredictability" in the running 
time of complete search procedures can often be explained by the phenomenon 
of "heavy-tailed cost distributions". The understanding of these characteristics 
explains why "rapid restarts" and portfolio strategies are very effective. Restart 
and protfolio strategies eliminate the heavy-tailed behavior and exploit any sig- 
nificant probability mass early on in the distribution. Restarts and portfolio 
strategies therefore reduce the variance in runtime and the probability of failure 



of the search procedures, resulting in more robust overall search methods (Frost 
et al. 1997; Gomes and Selman 1999; Gomes et al. 1998; Gomes et al. 2000; 
and Hoos 1999). 

In the first paper of the Appendix, "Heavy-tailed Distributions in Combina- 
torial Search", we show that backtrack style algorithms are often characterized 
by distributions that can have infinite moments called heavy-tailed distributions. 

In the second paper of the Appendix, "Boosting Combinatorial Search Through 
Randomization" we discuss how to exploit heavy-tailed behavior to speed up 
search by using restart strategies. 

In the third paper of the Appendix, "Algorithm Portfolios", we discuss port- 
folio strategies, in the context of Mixed Integer Programming. 

Cutting planes and constraint propagation 

OR's inference method of choice, during search, is "cuts". "Cuts" or "cut- 
ting planes" are redundant constraints, in the sense that they do not eliminate 
feasible solutions. However, although these constraints are redundant in terms 
of the solution, they can play a major role during the search process. A classical 
example of the importance of cutting planes involves the pigeonhole problem: by 
adding the appropriate redundant constraints to a linear programming formu- 
lation, its relaxation immediately returns infeasibility. Without such redundant 
constraints, the results of the LP relaxation are useless. Gomory ( 1963) pi- 
oneered the study of cutting planes, showing how to systematically generate 
"cuts" that lead to an integer solution. The OR community has developed sev- 
eral techniques for the generation of cuts, but, in general, it is not clear how to 
construct such cuts. 

The CSP's community, on the other hand, mainly relies on domain reduc- 
tion techniques for inference during search. A very successful strategy is to 
exploit the structure of special constraints and treat them as a global constraint 
(Beldiceanu and Contejean 1994, Caseau and Laburthe 1997; Regin 1994 and 
1996). Some examples of such propagation methods are the constraint that 
guarantees that all elements of a vector are different (all-different constraint) 
and the constraint that enforces that certain values occur a given number of 
times in a given vector of variables (cardinality constraint). The implementa- 
tion of such constraints is an interesting use of Network Flow algorithms (Regin 
1994, 1996). 

A direction of research is the study of techniques that will lead to the gen- 
eration of better cuts as well as efficient domain reduction techniques, and the 
combination of cuts with domain reduction techniques. Relevant work in this 
area is that of Lovasz and Schrijver (1991) and Balas, Ceria, and Cornuejols 
(1993). They have developed the lifi-and-project technique. Hooker (1992) has 
developed cutting plane algorithms for IP and resolution methods in proposi- 
tional logic. Work on the automated generation of cutting planes for problems 
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such as the pigeonhole problem has been done by Barth (1996). The work done 
at Kestrel Institute using a transformational approach to scheduling encom- 
passes the generation of very efficient constraint propagation techniques (Smith 
and Parra 93). Relevant work on exploiting the structure of global constraints 
for domain reduction is that of e.g., Beldiceanu and Contejean 1994, Caseau 
and Laburthe 1997, and Regin (1994,1996). 

Coupling of Column Generation with CSP 

As described above, the column generation formulation involves two phases: 
(1) generating columns, and (2) solving the corresponding LP relaxation prob- 
lem. In general, the process of generating columns is quite "messy", since com- 
plicated constraints are involved. OR methods are not suitable for such a task. 
A combination of AI and OR techniques can enhance this phase considerably. 
Leconte et al. (1997) have reported very good results for solving a column 
generation problem applied to bin-packing configuration problems using hybrid 
solvers. 

Robustness 

Ideally, we would like to find not only good but also robust solutions. The 
intuition behind robustness is: given a set C of changes to the initial formulation 
of the problem instance, a solution A is more robust than solution B, w.r.t. 
set C, if the number of changes required to fix solution A is less than the 
number of changes required to fix solution B. There are very few results on 
the study of robustness. Most results emphasize generation of solutions from 
scratch completely ignoring issues on robustness. This is an area that requires 
substantial research, starting with a good definition of the notion of robustness. 

4    Synopsis of the papers in the Appendix 

In the Appendix we include three papers that elaborate on several issues dis- 
cussed above. In this section we give a short synopsis of each paper. 

Heavy-tailed Distributions in Combinatorial Search (with Bart Sel- 
man and Nuno Crato) In this paper we show that backtrack style algo- 
rithms are often characterized by distributions that have infinite moments called 
heavy-tailed distributions. We also show how restart strategies are effective for 
eliminating heavy-tailed behavior. In fact, the heavy-tailed behavior that char- 
acterizes combinatorial search methods can be exploited in terms of algorithm 
design, leading to considerable speed ups in runtime. This issue is expanded in 
the next two papers of the Appendix. 
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Boosting Combinatorial Search through Randomization (with Henry 
Kautz and Bart Selman) In this paper we discuss how restart strategies 
are effective to speed up search, taking advantage of heavy-tailed behavior. We 

consider applications in planning and scheduling. 

Algorithm Portfolios (with Bart Selman) In this paper we discuss port- 

folio strategies, in the context of Mixed Integer Programming. 
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Abstract. Combinatorial search methods often exhibit a large variabil- 
ity in performance. We study the cost profiles of combinatorial search 
procedures. Our study reveals some intriguing properties of such cost 
profiles. The distributions are often characterized by very long tails or 
"heavy tails". We will show that these distributions are best character- 
ized by a general class of distributions that have no moments (i.e., an 
infinite mean, variance, etc.). Such non-standard distributions have re- 
cently been observed in areas as diverse as economics, statistical physics, 
and geophysics. They are closely related to fractal phenomena, whose 
study was introduced by Mandelbrot. We believe this is the first find- 
ing of these distributions in a purely computational setting. We also 
show how random restarts can effectively eliminate heavy-tailed behav- 
ior, thereby dramatically improving the overall performance of a search 
procedure. 

1     Introduction 

Combinatorial search methods exhibit a remarkable variability in the time re- 
quired to solve any particular problem instance. For example, we see significant 
differences on runs of different heuristics, runs on different problem instances, 
and, for stochastic methods, runs with different random seeds. The inherent ex- 
ponential nature of the search process appears to magnify the unpredictability 
of search procedures. It is not uncommon to observe a combinatorial method 
"hang" on a given instance, whereas a different heuristic, or even just another 
stochastic run, solves the instance quickly. 

This work was performed while the second author was at AT&T Laboratories, 
Florham Park, NJ 07932-0971. 



We explore the cost distribution profiles of search methods on a variety of 
problem instances. Our study reveals some intriguing properties of such cost 
profiles. The distributions are often characterized by very long tails or "heavy 
tails". We will show that these distributions are best captured by a general class 
of distributions that have no moments, i.e., they have infinite mean, variance, 
etc. 

Heavy-tailed distributions were first introduced by the Italian-born Swiss 
economist Vilfredo Pareto in the context of income distribution. They were ex- 
tensively studied mathematically by Paul Levy in the period between the world 
wars. Levy worked on a class of random variables with heavy tails of this type, 
which he called stable random variables. However, at the time, these distribu- 
tions were largely considered probabilistic curiosities or pathological cases mainly 
used in counter-examples.This situation changed dramatically with Mandelbrot's 
work on fractals. In particular, two seminal papers of Mandelbrot (1960, 1963) 
were instrumental in establishing the use of stable distributions for modeling 
real-world phenomena. 

Recently, heavy-tailed distributions have been used to model phenomena in 
areas as diverse as economics, statistical physics, and geophysics. More con- 
cretely, they have been applied in stock market analysis, Brownian motion, 
wheather forecasts, earthquake prediction, and recently, for modeling time de- 
lays on the World Wide Web (e.g., Mandelbrot 1983; Samorodnitsky and Taqqu 
1994). We believe our work provides the first demonstration of the suitability of 
heavy-tailed distributions in modeling the computational cost of combinatorial 
search methods. 

300     400     500     600 
sequencs of instance 

Figure la: Erratic behavior of mean cost value. 

Various researchers studying the computational nature of search problems 
have informally observed the erratic behavior of the mean and the variance 



Figure lb: Mean for a standard distribution (gamma). 

of the search cost. This phenomenon has led them to use the median cost to 
characterize search difficulty. The heavy-tailed distributions provide a formal 
framework explaining the erratic mean and variance behavior. See Figure 1, 
for a preview of this phenomenon. Figure la shows the mean cost calculated 
over an increasing number of runs, on the same instance, of a backtrack style 
search procedure (details below). Contrast this behavior with that of the mean 
of a standard probability distribution (a gamma distribution; no heavy tails) as 
given in Figure lb. In Figure lb, we see that the sample mean converges rapidly 
to a constant value with increasing sample size. On the other hand, the heavy- 
tailed distribution in Figure la shows a highly erratic behavior of the mean that 
does not stabilize with increasing sample size.1 

As a direct practical consequence of the heavy-tailed behavior of cost distri- 
butions, we show how randomized restarts of search procedures can dramatically 
reduce the variance in the search behavior. In fact, we will demonstrate that a 
search strategy with restarts can eliminate heavy-tailed distributions. This may 
explain the common informal use of restarts on combinatorial search problems. 

2    Structured Search Problems 

The study of the complexity and performance of search procedures when applied 
to realistic problems is greatly hampered by the difficulty in gathering realistic 
data. As an alternative, researchers heavily resort to randomly generated in- 
stances or highly structured problems from, e.g., finite algebra. The random 
instances clearly lack sufficient structure, whereas the finite algebra problems 
are, in some sense, too regular. In order to bridge this gap, we introduced a new 

1 The median, not shown here, stabilizes rather quickly at the value 1. 
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benchmark domain, the Quasigroup Completion Problem (Gomes and Selman 
1997a). 

A quasigroup is an ordered pair (Q, •), where Q is a set and (•) is a binary 
operation on Q such that the equations a ■ x = b and y • a = b are uniquely 
solvable for every pair of elements a, b in Q. The order N of the quasigroup 
is the cardinality of the set Q. The best way to understand the structure of a 
quasigroup is to consider the N by N multiplication table as defined by its binary 
operation. The constraints on a quasigroup are such that its multiplication table 
defines a Latin square. This means that in each row of the table, each element 
of the set Q occurs exactly once; similarly, in each column, each element occurs 
exactly once (Denes and Keedwell 1974). 

An incomplete or partial latin square P is a partially filled N by N table such 
that no symbol occurs twice in a row or a column. The Quasigroup Completion 
Problem is the problem of determining whether the remaining entries of the 
table can be filled in such a way that we obtain a complete latin square, that is, 
a full multiplication table of a quasigroup. We view the pre-assigned values of 
the latin square as a perturbation to the original problem of finding an arbitrary 
latin square. Another way to look at these pre-assigned values is as a set of 
additional problem constraints on the basic structure of the quasigroup. 

There is a natural formulation of the problem as a Constraint Satisfaction 
Problem. We have a variable for each of the N2 entries in the multiplication 
table of the quasigroup, and we use constraints to capture the requirement of 
having no repeated values in any row or column. All variables have the same 
domain, namely the set of elements Q of the quasigroup. Pre-assigned values are 
captured by fixing the value of some of the variables. 

Colbourn (1983) showed the quasigroup completion problem to be NP-complete. 
In previous work, we identified a clear phase transition phenomenon for the 
quasigroup completion problem (Gomes and Selman 1997a). See Figures 2 and 
3. From the figures, we observe that the costs peak roughly around the same 
ratio (approximately 42% pre-assignment) for different values of N. (Each data 
point is generated using 1,000 problem instances. The pre-assigned values were 
randomly generated.) This phase transition with the corresponding cost profile 
allows us to tune the difficulty of our problem class by varying the percentage 
of pre-assigned values. 

An interesting application area of latin squares is the design of statistical 
experiments. The purpose of latin squares is to eliminate the effect of certain 
systematic dependency among the data (Denes and Keedwell 1974). Another in- 
teresting application is in scheduling and timetabling. For example, latin squares 
are useful in determining intricate schedules involving pairwise meetings among 
the members of a group (Anderson 1985). The natural perturbation of this prob- 
lem is the problem of completing a schedule given a set pre-assigned meetings. 

The quasigroup domain has also been extensively used in the area of auto- 
mated theorem proving. In this community, the main interest in this domain 
has been driven by questions regarding the existence and nonexistence of quasi- 
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groups with additional mathematical properties (Fujita et al. 1993; Lam et al. 
1989). 

1                1  1  1 

/ \ order 11 
order 12 Hrr. ■ 

/ \ order 13 
order 14 

-0-- 
-M-- • 

lOOO 

/ ^ 

\ 

order 15 

: 

100 

^' \ \ 
: 

10 r w w ■: 

A \ w : 

' ..^'■'-':J'''" x\ \ \  * 
0.3 0.4 0.5 

fraction   of   pre-aBalgn«d   «lwnenta 

Figure 2: The Complexity of Quasigroup Completion (Log Scale). 

3    Computational Cost Profiles 

In this section, we consider the variability in search cost due to different search 
heuristics. As our basic search procedure, we use a complete backtrack-style 
search method. The performance of such procedures can vary dramatically de- 
pending on the way one selects the next variable to branch on (the "variable 
selection strategy") and in what order the possible values are assigned to a vari- 
able (the "value selection strategy"). 

One of the most effective strategies is the so-called First-Fail heuristic.2 In the 
First-Fail heuristic, the next variable to branch on is the one with the smallest 
remaining domain (i.e., in choosing a value for the variable during the backtrack 
search, the search procedure has the fewest possible options left to explore — 
leading to the smallest branching factor). We consider a popular extension of 
the First-Fail heuristic, called the Brelaz heuristics (Brelaz 1979), which was 
originally introduced for graph coloring procedures. 

The Brelaz heuristic specifies a way for breaking ties in the First-fail rule: 
If two variables have equally small remaining domains, the Brelaz heuristic pro- 
poses to select the variable that shares constraints with the largest number of 
the remaining unassigned variables. A natural variation on this tie-breaking rule 

2 This is really a prerequisit for any reasonable backtrack-style search method. In 
theorem proving and Boolean satisfiability, the rule is related to the powerful unit- 
propagation heuristic. 
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Figure 3: Phase Transition for the Completion Problem. 

is what we call the "reverse Brelaz" heuristic, in which preference is given to the 
variable that shares constraints with the smallest number of unassigned vari- 
ables. Any remaining ties after the (reverse) Brelaz rule are resolved randomly. 
(Note that such tie breaking introduces a stochastic element in our complete 
search method.) One final issue left to specify in our search procedure is the or- 
der in which the values are assigned to a variable. In the standard Brelaz, value 
assignment is done in lexicographical order (i.e., systematic). In our experiments, 
we consider four strategies: 

- Brelaz-S — Brelaz with systematic value selection, 
- Brelaz-R — Brelaz with random value selection, 
- R-Brelaz-S — Reverse Brelaz with systematic value selection, and 
- R-berlaz-R — Reverse Brelaz with random value selection. 

We encoded this problem in C++ using ILOG SOLVER, a powerful C++ 
constraint programming library (Puget 1994). ILOG provides a backtracking 
mechanism that allows us to keep track of variables and their domains, while 
maintaining arc-consistency (van Hentenryck et al. 1992). 

Figure 4 shows the performance profile of our four strategies for an instance 
of the quasigroup completion problem of order 20 with 10% pre-assigned values, 
i.e., in the underconstrained area. Each curve gives the cumulative distribu- 
tion obtained for each strategy by solving the problem 10,000 times. The cost 
(horizontal axis) is measured in number of backtracks, which is directly propor- 
tional to the total runtime of our strategies. For example, the figure shows that 
R-Brelaz-R, finished roughly 80% of the 10,000 runs in 15 backtracks or less. 

First, we note that the (cumulative) distributions have surprising long tails 
after a steep initial climb. We will return to this issue below. We also see that 
that R-Brelaz-R dominates the other strategies over almost the full range of 
the distribution.  (Brelaz-S dominates very early on but the difference is not 
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Figure 4: Finding quasigroups of order 20 with 10% pre-assigned values. 

statistically significant.) Figure 5 shows the performance profile on an instance of 
the quasigroup completion problem in the critically constrained area. The initial 
climb followed by a long tail is even more dramatic. In this case, R-Brelaz-R and 
R-Brelaz-S give virtually the same performance, and both dominate the other 
two strategies. 

These profiles suggest that it is difficult to take advantage of combining 
different heuristics in order to reduce variability. It was our initial intention to 
build so-called algorithm portfolios to reduce variability (Huberman et al. 1997 
and Gomes and Selman 1997b). However, with one strategy dominating over the 
full profile there is no clear payoff in combining different heuristics, at least in 
this domain. In fact, it may well be the case that on a given problem domain, 
one can often find a single dominating heuristic. Our study here is not meant to 
be exhaustive regarding the full spectrum of search heuristics. In particular, we 
restricted ourselves to variations on the well-known Brelaz search heuristic. 

In the next section, we concentrate on a perhaps more striking feature of 
the cost distributions: the long tails. As we will see in our section on "restarts", 
the heavy tail behavior can be exploited effectively to reduce variability in the 
search cost. 

4    Heavy-Tailed Distributions 

Figure 6a shows the heavy-tailed nature of our cost distributions in a more direct 
manner. The probability distribution was obtained using R-Brelaz-R on an in- 
stance of the quasigroup completion problem of order 20 with 5% preplacement.3 

We considered the distributions of over two dozen randomly picked instances 
3 Work on exceptionally hard problems provides further support for the heavy tailed 

nature of the distributions (Gent and Walsh 1993; Smith and Grant 1995). However, 
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Figure 5: Finding quasigroups of order 10 at the phase transition. 

from both the under-constrained and the critically constrained area, as well as 
some aggregate distributions. We found heavy-tailed distributions for almost all 
of our solvable instances and aggregate distributions. Some very easy solvable 
instances did not exhibit heavy tails. Interestingly, the unsolvable instances do 
not exhibit heavy-tails. The gamma and normal distributions were the best fit 
for the majority of our unsolvable instances (see also Frost et al. (1997)). 

In order to model the long tail behavior of our distributions, we will consider 
distributions which asymptotically have tails of the Pareto-Levy form, viz. 

Pr{X>x}~C.x_0\    x>0 (1) 

where a > 0 is a constant. These are distributions whose tails have a hyper- 
bolic decay. For the case which concerns us it suffices to consider this tail be- 
havior for the positive values of the random variable X. So, in what follows 
we will assume that the distribution has support on the positive half line, i.e., 
Pr{0<X <oo} = 1. 

Mandelbrot (1983) provides an excellent introduction to these distributions 
with a discussion of their inherently self-similar or fractal nature. For a complete 
treatment of stable distributions see either Zolotarev (1986), or the more modern 
approach of Samorodnitsky and Taqqu (1994). See also de Lima (1997). In what 
follows, we simply outline the main results we will need to use. 

A random variable X is said to have a stable distribution if for any n > 1 
there is a positive number C„ and a real number Dn such that 

v 
Xx + X2 + ■ ■ ■ + Xn = CnX + Dn (2) 

the heavy tails we observed appear more ubiquitous: We observed heavy-tails in the 
majority of solvable instances in the under-constrained area and also in the majority 
of solvable instances in the critically constrained area. For other recent related work 
on cost distributions, see Frost et al. (1997) and Kwan (1995). 
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Figure 6a: Probability distribution exhibiting heavy-tailed behavior. 

where Xi, X2,..., Xn are independent copies of X and = stands for equality in 
distribution. Prom this definition, it can be shown that the following is implied 

Cn .= nl'a 
(3) 

for some 0 < a < 2 (Samorodnitsky and Taqqu 1994). The constant a is called 
the index of stability of the distribution. Stable distributions with a < 2 have 
heavy tails of the Pareto-Levy type. The index of stability is the same a which 
appears in equation (1). 

Since the existence or nonexistence of moments is completely determined 
by the tail behavior, it is simple to check that the index of stability a is the 
maximal moment exponent of the distribution. For a < 2, moments of X of 
order less than a are finite while all higher order moments are infinite, i.e., 
a = sup{a > 0 : E\X\a < oo}. For example, when a = 1.5, the distribution only 
has a finite mean but no finite variance. When a = 0.6, the distribution does 
not have a finite mean nor a finite variance. 

While it is relatively easy to define a stable distribution, only in a few par- 
ticular cases the density of the stable distributions is known in its closed form. 

It should be noted, however, that distributions with tails of the form (1) 
are in the domain of attraction of stable distributions, i.e., properly normalized 
sums of variables with tails of the Pareto-Levy type converge in distribution 
to an a-stable random variable. This additive character of stable distributions 
matches the additive nature of the number of nodes searched in subtrees of the 
backtrack tree. This provides some intuition behind the suitability of the stable 
distributions for modeling search cost distributions. 

In order to check for the existence of heavy tails in our distributions, we 
proceed in two steps. First, we graphically analyze the tail behavior of the sample 
distributions. Second, we formally estimate the index of stability. 
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Figure 6b: Log-log plot of heavy-tailed behavior. 

If a Pareto-Levy tail is observed, then the rate of decrease of the estimated 
density is hyperbolic — i.e., slower than the exponential rate. The complement 
to one of the cumulative distribution also displays a hyperbolic decay 

1 - F(x) = Pr {X > x} ~ C.x' (4) 

Then, for an heavy-tailed random variable, a log-log plot of the frequency of 
observed backtracks after x should show an approximate linear decrease at the 
tail. Moreover, the slope of the observed linear decrease provides an estimate of 
the index a. In contrast, for a distribution with an exponentially decreasing tail, 
the log-log plot should show a faster-than-linear decrease of the tail. 

Since the described behavior is a property of the tail we should mainly be 
concerned with the last observations, say the 10% observations that display a 
higher number of backtracks. 

In Figure 6b, we have plotted three empirical cumulative distributions. One 
based on the probability distribution from Figure 6a (under-constrained), an- 
other for a medium constrained (solvable) instance, and a third for a critically 
constrained (solvable) instance. The linear nature of the tails in this log-log plot 
directly reveals tails of the Pareto-Levy type. 

For contrast we show in Figure 6c the log-log plots of two standard probabil- 
ity distributions. We see sharp rounded drop-off of both curves — indicating the 
absence of heavy tails. The distributions are given by the cost profiles on two 
unsolvable instances of our quasigroup completion problem. One is a rare un- 
solvable problem in the underconstrained area (best fit: a gamma distribution), 
the other is an unsolvable instance in the critically constrained region (best fit: 
normal distribution). 

To complement our visual check of Figure 6b, and obtain an estimate of the 
index of stability (the value of a), we use the method of Hall (1982), which 
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Figure 6c: Log-log plot of standard distributions (no heavy tails). 

performs a regression on the extreme tails. Let Xn\ < Xn2 < • • • < Xnn be 
the order statistics, i.e., the ordered values of the sample X\, Xi ■ ■ ■, Xn of the 
obtained number of backtracks. Set r < n as a truncation value which allows us 
to consider only the extreme observations. We obtain the estimator 

ar r-l^logXn -j+l ~ log-Xn.n- (5) 

This is a maximum likelihood estimator and Hall (1982) has established its 
asymptotic normality. Hall has also determined the optimal choice of the trun- 
cation parameter r. However, since this parameter is a function of the unknown 
parameters of the distribution, we adhere here to the common practice of using a 
set of values in the range {n/10, n/25}. This corresponds to severe truncations, 
which allow us to be more confident in our results. 

We examined over two dozen distributions, and found values for a that are 
consistent with the infinite variance hypothesis (a < 2) and, in many cases, 
they point to the nonexistence of the mean (a < 1). The estimates of a for the 
distributions in Figure 6b were consistent with the hypothesis of infinite vari- 
ance and infinite mean. The standard deviation in the estimates of the a values 
were consistently an order of magnitude smaller than the estimates themselves, 
pointing to highly significant coefficients. 

Are heavy-tailed distributions able to explain the strange sample mean dis- 
cussed in the introduction? In other words, are stable distributions with index 
of stability of the order of magnitude of those estimated, able to generate data 
which reproduces the pattern shown in Figure la? 

By using the method of Chambers, Mallows, and Stuck (1976), we generated 
random samples from a stable distribution, and calculated the mean as function 
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Figure 7: Behavior of mean for example stable distribution. 

of the number of samples. The resulting sequence of partial means is portrayed 
on Figure 7. The comparison between Figures la and 7 is striking, as the general 
wild oscillations are very similar and characteristic of heavy-tailed distributions. 

5    Exploiting Heavy-Tailed Behavior 

effect of restarts (cutoff 4) 

OS 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

no restarts 

with restarts 

10O 1 SO 200 
total number of backtracks 

Figure 8a: Using restarts to exploit heavy-tailed behavior. 

For our heavy-tailed distributions, we see that our procedures are in some 
sense most effective early on in the search. This suggests that a sequence of short 
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Figure 8b: Log-log plot for restarts. 

runs instead of a single long run may be a more effective use of our computational 
resources. We explore this idea by considering a fixed limit L on our overall cost 
("run time"). From the cumulative cost distribution and L, we can determine 
what our expected probability of not solving the instance is because the search 
procedure runs out of time. We can also compute this "probability of failure" 
for a procedure that quickly restarts. Figures 8a and 8b give the results of such 
an analysis. (For more detailed results on the derivations of the probability 
distributions for restarts, see Gomes and Selman, Rome Lab Technical Report, 
1997. For related work, see Gomes and Selman 1997b.) 

The analysis was done for the completion problem of an instance of order 
20 with 5% pre-placed. See distribution in Figure 6a. From Figure 8a, we see 
that without restarts and given a total of 50 backtracks, we have a failure rate 
of around 70%. Using restarts (every 4 backtracks), this failure rate drops to 
around 10%. With an overall limit of only 150 backtracks, the restart startegy 
solves the instance almost always, whereas the original procedure still has a fail- 
ure rate of around 70%. Such a dramatic improvement due to restarts is typical 
for heavy tailed distributions — in particular, we get similar results on critically 
constrained instances. Finally, Figure 8b shows a clear downward curve for the 
restart strategy. This suggests that the heavy-tailed nature of the cost distribu- 
tion has disappeared. And, thus, we see that random restarts provide an effective 
mechanism for dealing with heavy-tailed cost distributions. These results explain 
the informal popularity of restart strategies in combinatorial search methods. 

6    Conclusions and Future Work 

We have revealed the special heavy-tailed nature of the cost distribution of com- 
binatorial search procedures. We showed how such distributions can be modeled 
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as stable distributions with heavy Pareto-Levy type tails. Our analysis explains 
the empirically observed erratic behavior of the mean and variance of the cost of 
combinatorial search. And, more generally, the high variability observed between 
runs of such procedures. 

Stable distributions have recently been used to capture a variety of real- 
world phenomena, such as stock market and wheather patterns. We believe our 
results are the first indication of the occurrance of such distributions in purely 
computational processes. We hope that our results will further stimulate research 
along these lines by employing the special statistical tools available in this area. 

We also showed how a "restart" strategy is an effective remedy against the 
heavy-tailed phenomena. Restarts drastically reduce the probability of failure 
under limited time resources and reduce the overall variability of the method. 
Of course, when heavy tails are absent, restarts are much less effective. In our 
study, we did not encounter heavy tails for unsolvable instances. 
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Abstract 

Unpredictability in the running time of complete search 
procedures can often be explained by the phenomenon of 
"heavy-tailed cost distributions", meaning that at any time 
during the experiment there is a non-negligible probability 
of hitting a problem that requires exponentially more time to 
solve than any that has been encountered before (Gomes et 
al. 1998a). We present a general method for introducing con- 
trolled randomization into complete search algorithms. The 
"boosted" search methods provably eliminate heavy-tails to 
the right of the median. Furthermore, they can take advan- 
tage of heavy-tails to the left of the median (that is, a non- 
negligible chance of very short runs) to dramatically shorten 
the solution time. We demonstrate speedups of several or- 
ders of magnitude for state-of-the-art complete search pro- 
cedures running on hard, real-world problems. 

Introduction 

The time required by complete search methods to solve 
similar combinatorial problems can be surprisingly vari- 
able. Two problem instances may be identical, except for 
the order in which the variables are numbered. A particular 
complete search algorithm may solve the first in seconds, 
yet require hours or days to solve the second. Even for 
a single problem instance, a seemingly trivial change in a 
detail of the search algorithm may drastically alter the solu- 
tion time. In addition, in many domains there are problem 
instances that can be quickly solved by incomplete meth- 
ods, but apparently cannot be solved by complete methods, 
even methods guided by powerful heuristics. 

This unpredictability in the running time of a complete 
algorithm undermines one of the main reasons that one may 
choose to employ such a method, namely the desire for a 
guarantee that the algorithm will determine whether or not 
each problem instance in fact has a solution. It is desirable, 
therefore, to find ways to improve the robustness and pre- 
dictability of these algorithms. 

This paper discusses a general technique for improv- 
ing complete search methods by introducing a controlled 
amount of randomization. The technique actually takes ad- 
vantage of the variability of the underlying search method 

in order to find solutions more quickly and with less vari- 
ance in solution time. We demonstrate the effectiveness 
of this strategy on SAT and CSP algorithms, in the do- 
mains of logistics planning, circuit synthesis, and round- 
robin scheduling. Solutions times are reduced by an order 
of magnitude or more, and some instances are solved for 
the first time by a method other than local search. 

We will show that the unpredictability in running times 
for combinatorial algorithms can often be explained by 
a phenomenon called a "heavy-tailed cost distribution" 
(Gomes et al. 1998a). In our preliminary experiments, we 
plotted the solution times for a deterministic search algo- 
rithm running on a random distribution of scheduling prob- 
lem instances. We noticed that at any time during the ex- 
periment there was a non-negligible probability of hitting 
a problem that required exponentially more time to solve 
than any that had been encountered before. This so-called 
"heavy-tail" phenomena causes the mean solution time to 
increase with the length of the experiment, and to be infi- 
nite in the limit. 

Previous authors have noted the occurrence of seemingly 
exceptionally hard problems in fixed problem distributions 
(Gent and Walsh 1994; Smith and Grant 1996). However, 
we further discovered that when a small amount of ran- 
domization was introduced into the heuristic used by the 
search algorithm, then, on some runs, the instances were 
solved quickly. Thus, the "hardness" did not reside in the 
instances, but rather in the combination of the instance with 
the details of the deterministic algorithm. When we plotted 
the solution times for many runs of the randomized com- 
plete algorithm (with different random seeds) on a single 
problem instance, we discovered the same heavy-tailed dis- 
tribution as we had seen before on a collection of instances. 

This observation led us to realize that a deterministic 
search algorithm can be viewed as a single run of a ran- 
domized algorithm. The unpredictability of deterministic, 
complete algorithms is thus explained by the variance one 
would expect in any one run of a randomized algorithm. 
Furthermore, by analyzing the shape of the cost distribu- 
tion we developed simple techniques that provably reduce 
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Problem Solver Deterministic Randomized 
soln. time mean soln. time 

logistics.d Satz 108 min 95 sec 
3bit-adder-32 Satz > 24 hrs 165 sec 
3bit-adder-31 Satz > 24 hrs 17 min 

round-robin 14 ILOG 411 sec 250 sec 
round-robin 16 ILOG > 24 hrs 1.4 hrs 
round-robin 18 ILOG > 48 hrs « 22 hrs 
block-world.d Satz 30 min 23 min 

Table 1: Comparison of speed of original deterministic algorithms and randomized versions on test-bed problems. 

the mean solution time. 
For our experiments, we used known hard problem in- 

stances from scheduling, planning, and circuit synthesis, 
and a state of-the-art satisfiability engine (Satz, by Li 
and Anbulagan (1997)), and a highly efficient CSP solver 
built using the ILOG C++ constraint programming library 
(Puget and Leconte 1995). It is important to note that in 
both cases the underlying deterministic complete search en- 
gines are among the fastest (and on many problems, the 
fastest) in their class. Thus, the techniques discussed in 
this paper extend the range of complete methods to prob- 
lems that were previously beyond their reach. For a pre- 
view of our main results, see Table 1. The table shows 
how our randomization strategy enabled us to solve sev- 
eral previously unsolved problem instances, and other in- 
stances were solved up to an order of magnitude faster. 
Given the techniques' simplicity and generality, our ap- 
proach can be easily adapted to improve the performance 
of other backtrack-style search methods used in planning, 
scheduling, and other tasks of interest to AI. 

Problem Domains 

Our problem domains are timetable scheduling, planning, 
and circuit synthesis. The first is formalized as a CSP prob- 
lem, and the latter two as propositional satisfiability. 

Timetabling consists in determining whether there ex- 
ists a feasible schedule that takes into consideration a set 
of pairing and distribution constraints. More specifically, 
we consider problems derived from sports scheduling ap- 
plications. The literature in this area is growing, and one 
can begin to get a sense of the range and mathematical dif- 
ficulty of the problems encountered (McAloon et al. 1997; 
Nemhauser and Trick 1997; and Schreuder 1992). Here 
we consider the timetabling problem for the classic "round- 
robin" schedule: every team must play every other team 
exactly once. The problem is formally defined as follows: 
1. There are TV teams (N even) and every two teams play 
each other exactly once. 
2. The season lasts N - 1 weeks. 

3. Every team plays one game in each week of the season. 
4. There are AT/2 periods and, each week, every period is 
scheduled for one game. 
5. No team plays more than twice in the same period over 
the course of the season. 

Up to 8-team problems are relatively simple and can be 
done by brute force. However, the combinatorics of this 
scheduling problem are explosive. For an N team league, 
there are N/2 • (N -1) matchups (i,j) with 0 < i < j < N 
to be played. A schedule can be thought of as a permutation 
of these matchups. So, for N teams the search space size 
is (N/2 ■ (N - 1))!, i.e., the search space size grows as the 
factorial of the square of N/2. Published algorithms for this 
problem all scale poorly, and the times for our deterministic 
solver (as shown in Table 1) are among the best (see also 
Gomes et al. 1998b). 

The second domain is planning. Kautz and Selman 
(1996) showed that propositional SAT encodings of diffi- 
cult STRIPS-style planning problems could be efficiently 
solved by SAT engines. While both a complete backtrack- 
style engine and an incomplete local-search engine worked 
well on moderate-sized problems, the largest problems 
from the domain of logistics scheduling could only be 
solved by local search. However, it turns out that the de- 
terministic version of Satz can solve all of the logistics in- 
stances from that paper in less than 2 minutes. Therefore we 
constructed a still-larger planning problem, labeled "logis- 
tics.d". This domain involves moving packages on trucks 
and airplanes between different locations in different cities. 
While the largest logistics problem from the Kautz and Sel- 
man (1996) paper involved 1,141 variables, "logistics.d" in- 
volves 2,160 variables. 

The final domain is circuit synthesis. Kamath et al. 
(1993) developed a technique for expressing the problem of 
synthesizing a programmable logic array (PLA) as a propo- 
sitional satisfiable problem. The statement of the problem 
includes a table specifying the function to be computed, and 
an upper-bound on the number of gates that may appear in 
the circuit. In general, these problems become more dif- 
ficult to solve as the number of gates is reduced, until the 
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limit is reached where the instance is unsatisfiable. These 
problems are quite hard to solve with complete SAT proce- 
dures, and have been used as part of the test-beds for numer- 
ous SAT competitions and research studies. The problems 
considered in this paper, "3bit-adder-32" and "3bit-adder- 
31" are (as one would guess) based on synthesizing a 3-bit 
adder using 32 and 31 gates respectively. Although Selman 
and Kautz (1993) solve the instances using local search, 
no one has previously solved either using a backtrack-style 
procedure. 

Randomizing Complete Search Engines 

We now consider general techniques for adding randomiza- 
tion to complete, systematic, backtrack-style search proce- 
dures. Such a procedure constructs a solution incremen- 
tally. At each step a heuristic is used to select an operation 
to be applied to a partial solution, such as assigning a value 
to an unassigned variable. Eventually either a complete so- 
lution is found, or the algorithm determines that the current 
partial solution is inconsistent. In the latter case, the algo- 
rithm backtracks to an earlier point in its search tree. 

If several choices are heuristically determined to be 
equally good, then a deterministic algorithm applies some 
fixed rule to pick one of the operations; for example, to 
select the lowest-numbered variable to assign. The most 
obvious place to apply randomization, therefore, is in this 
step of tie-breaking: if several choices are ranked equally, 
choose among them at random. Even this simple modi- 
fication can dramatically change the behavior of a search 
algorithm, as we will see in the section on CSP below. 

However, if the heuristic function is particular power- 
ful, it may rarely assign more than one choice the highest 
score. To handle this, we can introduce a "heuristic equiva- 
lence" parameter to the algorithm. Setting the parameter to 
a value H greater than zero means all choices who receive 
scores within H-percent of the highest score are considered 
equally good. This expands the choice-set for random tie- 
breaking. 

With these changes each run of the search algorithm on a 
particular instance will differ in the order in which choices 
are made and potentially in time to solution. As we will 
discuss in detail below, it can be advantageous to terminate 
searches which appear to be "stuck", exploring a part of the 
space far from a solution. Therefore we will also introduce 
a "cutoff" parameter, that limits search to a specified num- 
ber of backtracks. When the cutoff is reached, the algorithm 
is restarted at the root of the search tree. 

We should note that introducing randomness in the 
branching variable selection does not effect the complete- 
ness of the backtrack-style search. Some basic book- 
keeping (only linear space) ensures that the procedures do 
not revisit any previously explored part of the search space, 
which means that we can still determine inconsistencies, 

unlike local search methods. The cutoff parameter does 
limit the size of the space that can be searched exhaustively 
between restarts. In practice, we gradually increase the cut- 
off, to allow us to determine inconsistencies, if necessary. 

A variable-order randomization and restart strategy was 
employed in Crawford and Baker's (1994) "probing" algo- 
rithm for SAT. Despite the fact that it performed no back- 
tracking at all, it was shown to solve a number of examples. 
Even though, the "power of randomization" in combinato- 
rial search has been informally recognized by others (for 
recent work in scheduling domains, see e.g., Bresina 1996 
and Oddi and Smith 1997), our work provides the first ex- 
planation for the potential success of this kind of strategy, 
in terms of heavy-tailed distributions (Gomes etal. 1998a). 
As we will see, our data also shows that there is often a clear 
optimal cutoff value; simply probing down with unit propa- 
gation but no backtracking can be ineffective. For example, 
in Table 3 we have a 0% success rate for a cutoff value of 
2. More recently, Bayardo and Schräg (1997) introduced 
a backtrack-style solver, rel-sat, that included randomized 
tie-breaking and restarts, but with only a fixed, high cut- 
off value. The focus of that work was on the backtracking 
technique, rather than the effect of restarts. 

The first complete search algorithm we randomized was 
a CSP solver. ILOG SOLVER is a powerful C++ con- 
straint programming library (Puget and Leconte 1995). For 
the round-robin scheduling problems discussed below, we 
used the library to build a deterministic, backtrack-style 
CSP engine. (See Dechter (1991) and Freuder and Mack- 
worth (1994) for an overview of basic CSP algorithms.) 
It employs the first-fail heuristic for variable assignment, 
which selects the variables with the smallest domain first; 
ties are broken lexicographically. The performance of this 
deterministic version already matches or exceeds all the 
published results on solving these types of problems. We 
then randomized the solver by breaking ties randomly, and 
adding a cutoff parameter (Gomes et al. 1998b). 

The second algorithm we randomized was for prepo- 
sitional satisfiability. One of the fastest complete search 
engines for prepositional satisfiability testing is the Satz 
system of Li and Anbulagan (1997). Satz is a version of 
the Davis-Putnam-Loveland procedure (Davis et al. 1962), 
with a heuristic based on choosing a branch variable that 
maximizes a function of the number of the unit propa- 
gations performed when it is set positively or negatively. 
Satz is the fastest deterministic SAT procedure we have 
found for the instances discussed in this paper. It can of- 
ten solve smaller instances of these types with less than 100 
backtracks. Because its heuristic usually chooses a single 
branching variable without ties, we added a heuristic equiv- 
alence parameter to enlarge the choice-set. 

34 



Heavy-Tailed Cost Distributions 

In previous work (Gomes et al. 1998a), we show that the tail 
behavior of randomized complete backtrack style methods 
is often best modeled using distributions which asymptoti- 
cally have tails of the Pareto-Levy form, viz. 

Pr{X>x}~ai_Q,    x>0 (1) 

where a > 0 is a constant (Mandelbrot 1960; and Samorod- 
nitsky 1994). These are heavy-tailed distributions, i.e., 
distributions whose tails have a power law decay. The 
constant a is called the index of stability of the distribu- 
tion. For a < 2, moments of X of order less than a 
are finite while all higher order moments are infinite, i.e., 
a = sup{a > 0 : E\X\a < oo}. For example, when 
a = 1.5, the distribution has a finite mean but no finite 
variance. With a = 0.6, the distribution has neither a finite 
mean nor a finite variance. 

If a Pareto-Levy tail is observed, then the rate of de- 
crease of the distribution is a power law. (Standard dis- 
tributions exhibit exponential decay.) From (1), we have 
1 - F(x) = Pr {X > x} ~ C.x~a, so the complement- 
to-one of the cumulative distribution, F(pc), also decays 
according to a power law. Given the power law decay of 
the complement-to-one of the cumulative distribution of a 
heavy-tailed random variable, its log-log plot should show 
an approximately linear decrease in the tail. Moreover, the 
slope of the observed linear decrease provides an estimate 
of the index a. 

Btdtads (09) 

Figure 1: Log-log plot of the tail of 12 team round-robin 
scheduling. 

Figure 1 shows the log-log plot of the tail (X > 10,000) 
of the complement-to-one of the cumulative distribution, 1- 
F(x), for our 12 team round-robin problem. The linear na- 
ture of the tail in this plot directly reveals heavy-tails of the 
Pareto-Levy type. 

To complement our visual check of heavy-tailed behavior 
of Figure 1, we calculate the maximum likelihood estimate 
of the index of stability (the value of a): For our round- 
robin scheduling problem, for N = 12, we obtain a = 0.7, 
which is consistent with the hypothesis of infinite mean and 
infinite variance, since a < l.1 

So far, we have identified heavy-tailed behavior of the 
cost distribution to the right of the median. The heavy 
tail nature shows that there is a computationally significant 
fraction of very long runs, decaying only at a polynomial 
rate. The strategy of running the search procedure with 
a cutoff near the median value of the distribution clearly 
avoids these long runs in the tail. 

However, our experiments in Gomes (1998a) also sug- 
gest a heavy tail phenomenon on the left-hand side of the 
median value of the cost distribution, which means that the 
success rate for a solution only increases polynomially with 
the number of backtracks. This explains how a relatively 
low cutoff value still gives a sufficiently high success rate 
to allow us to solve a problem instance. For example, for 
our round-robin scheduling problems with N = 16, we ob- 
served several runs that took less than 200 backtracks, com- 
pared to a median value of around 2,000,000. For N = 18, 
we ran with a cutoff of 500,000 and solved the instance af- 
ter 20 tries. Each try took about 1 hour, and the successful 
run took 350,632 backtracks. 

Tails on the left are also characterized by an index of 
stability. Based on our data (Gomes 1998a), we conjec- 
ture that a for the tail on the left is less than 1.0 on hard 
combinatorial search problems. This conjecture has strong 
implications in terms of algorithm design: It means that in 
order to obtain the minimal expected run time, a preferred 
strategy consists of relatively short runs of a randomized 
backtrack-style procedure. 

We do not wish to give the impression that every search 
problem gives rise to a heavy-tailed distribution. In fact, 
doing so would give rise to the suspicion that the distribu- 
tions we found were an artifact of our methodology, rather 
than a real phenomena of the problem domain! One do- 
main in which we have not found heavy-tails is on blocks- 
world planning problems. The hardest blocks-world prob- 
lem from Kautz and Selman (1996) is blocks-world.d, and it 
can be solved by deterministic Satz in 30 minutes. We ran 
the randomized version of Satz on this instance at a wide 
range of cutoff values and heuristic equivalence settings. 
The optimal equivalence parameter setting was 30%. How- 
ever, over a range of cutoff values, there was no evidence 
of a heavy-tailed distribution, and, therefore, randomization 

1 Of course, the computational cost of complete backtrack-style 
algorithms has a finite upper-bound. However, since we are deal- 
ing with NP-complete problems, this upper-bound is exponential 
in the size of the problem, which means that de facto, for realistic- 
size hard instances, it can be treated as infinite for practical pur- 
poses: no practical procedure can explore the search full space. 
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only slightly increases the effectiveness of Satz: the mean 
cost is 23 minutes. Further studies are needed to determine 
exactly what characteristics of combinatorial search prob- 
lems lead to heavy-tailed behavior. 

Boosting Performance by Randomization and 
Restarts 

So far, we have discussed how heavy-tailed probability dis- 
tributions underlie the large variability observed when run- 
ning a randomized backtrack-style procedure on a variety of 
problem instances. We can obtain more efficient and more 
predictable procedures by running the search up to a cer- 
tain cutoff point and then restarting at the root of the tree. 
Restarts clearly prevent the procedure from getting trapped 
in the long tails on the right of the distribution. In addi- 
tion, a very low cutoff value can also be used to exploit the 
heavy-tails to the left of the median, and will allow us to 
solve previously unsolved problem instances after a suffi- 
cient number of restarts. In Table 1, the mean solution times 
in the "Randomized" column are based on empirically de- 
termined near-optimal cutoff values. For each randomized 
solution time the standard deviation is of the same order 
of magnitude as the mean. This is to be expected because 
the distribution is geometric, as will be shown in the next 
section. Without restarts, of course, the variance and mean 
tend to infinity to a first approximation. 

We will now discuss these results in more detail. 
Our deterministic CSP procedure on the round-robin 

scheduling problem gives us us a solution for N = 14 in 
about 411 seconds. (Experiments ran on a 200MHz SGI 
Challenge.) We could not find a solution for N = 16 and 
N — 18. Apparently, the problem quickly becomes very 
difficult, even for moderate values of N. The subtle interac- 
tion between global and local constraints makes the search 
for a globally consistent solution surprisingly hard. 

For problems for which we can empirically determine the 
overall cost profile, we can calculate an optimal cutoff value 
to minimize the expected cost of finding a solution. Our 
main interest, however, is in solving previously unsolved 
instances, such as the N = 16 and N = 18 case. These 
problems are too hard to obtain a full cost distribution. For 
example, for N = 16, running with a cutoff of 1,000,000 
gives a success rate of less than 40%, so we do not even 
reach the median point of the distribution. Each run takes 
about 2 hours to complete. (We estimate that the median 
value is around 2,000,000. Our deterministic procedure ap- 
parently results in a run that still lies to the right of the ex- 
pected median cost.) In order to find a good cutoff value for 
very hard problem instances, the best available strategy is 
a trial-and-error process, where one experiments with vari- 
ous cutoff values, starting at relatively low values, since the 
optimal cutoff for these problems tends to lie below the me- 
dian value of the distribution. This can be seen from Table 

cutoff succ. mean cost 
rate (xlO5) 

200 0.0001 2.2 
5,000 0.003 1.5 
10,000 0.009 1.1 
50,000 0.07 0.7 
100,000 0.06 1.6 
250,000 0.21 1.2 

1,000,000 0.39 2.5 

Table 2: Solving the 16-team robin-robin scheduling prob- 
lem for a range of cutoff values. 

cutoff succ. 
rate 

mean cost 

2 0.0 >300,000 
4 0.00003 147,816 
8 0.0016 5,509 
16 0.009 1,861 
32 0.014 2,405 

250 0.018 13,456 
16000 0.14 107,611 

128000 0.32 307,550 

Table 3: Solving the logistics.d problem for a range of cut- 
off values. 

2, which gives the expected cost (backtracks) for finding a 
solution for N = 16 for a range of cutoff values. The opti- 
mal cutoff is around 5.104, resulting in an expected cost per 
solution of 7.105 backtracks (=s 1.4 hrs). For the N = 18 
case, we ran with a cutoff of 5.105, and found a solution 
after approximately 22 hours.2 

Table 3 gives the performance of Satz for a range of cut- 
off values on the logistics.d instance. Again, there is a clear 
optimal value: In this case, it's surprisingly low, 16 back- 
tracks. Despite the low success rate (less than 1%) at this 
cutoff value, the overall performance is close to optimal 
here, requiring around 1,800 backtracks total per solution, 
which takes around 95 seconds. Compare this with the 108 
minutes for the deterministic version of Satz. It's important 
to note that the 108 minutes run is not just an "unlucky" 
determinist run. Given the shape of the underlying heavy- 
tailed distribution, most runs take more than 100,000 back- 
tracks (over 1 hour). The trick is to exploit the fact that we 
have a non-negligible probably of solving the instance in a 
very short run. Our fast restart strategy exploits this. 

See Table 1 for other improvements due to randomiza- 

Since the submission of this paper, a lot of progress has been 
made in terms of solving larger instances ( McAloon et al. in 
preparation). By using multiple threads on a 14 processor Sun 
system, 26 and 28 teams schedules were generated, which is the 
record as of this writing (Wetzel and Zabatta, 1998). We be- 
lieve these numbers can be improved upon with our randomization 
technique. 
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tion. Until now, the 3bit-adder problems had not been 
solved by any backtrack-style procedure. On the block- 
world problem, we obtain little improvement, which can be 
attributed to the absence of heavy-tails as discussed above. 

These results show that introducing a stochastic element 
into a backtrack-style search procedure, combined with an 
appropriate restart strategy, can significantly enhance the 
procedure's performance. In fact, as we see here, it allows 
us to solve previously unsolved problem instances. 

A Formal Analysis of Restarts 

In this section we formalize the strategy of restarts 5 of a 
complete stochastic procedure A. We derive the probability 
distribution of S assuming the full knowledge of the proba- 
bility distribution of A. We demonstrate that the probability 
distribution associated with S does not exhibit heavy tails. 
Furthermore, S has a finite mean and variance, even if the 
stochastic procedure A has an infinite mean and variance. 

Let us consider a complete stochastic procedure and as- 
sociate with it the random variable A, where A is the num- 
ber of backtracks that it takes to find a solution or prove 
that it does not exist. Let us now consider the following 
stochastic strategy for running A: run A for a fixed number 
of backtracks c (the cutoff); if A finds a solution or proves it 
does not exist, then our stochastic strategy has also found a 
solution (or proved that it does not exist) and it stops. Oth- 
erwise, restart A from the beginning, using an independent 
random seed, for another c backtracks, and so on. Define S 
as the number of backtracks that the stochastic strategy of 
restarts of A with cutoff c takes to find a solution or prove 
that it does not exist. Let's assume that we know P[A< c], 
i.e., the probability that the stochastic procedure A will find 
a solution or prove that it does not exist in no more than 
c backtracks. The sequence of runs of A executed by our 
restart strategy are independent, and therefore they can be 
seen as a sequence of Bernoulli trials, in which the success 
consists in finding a solution (or proving that it doesn't ex- 
ist) before the end of the run. 

It's convenient to also define a random variable R, giving 
the number of restarts until a solution is found (or the in- 
stance is shown inconsistent). Note that R = \S/c]. R fol- 
lows a geometric distribution with parameter p = P[A < 
c}. The probability of the tail of S, P[S > s], is given by 

P[S > s] = (1 - p)Ls/cJ P[A > s mod c) 

Taking into consideration that R — \S/c] and that it 
follows a geometric distribution (exponential decay; finite 
mean and variance), it follows that the tail of the distribu- 
tion of S also exhibits exponential decay and S has a finite 
mean and variance. 

We should emphasize that when adopting a low cutoff 
the strategy of restarts partially eliminates the heavy tail on 

the left: the lower the cutoff, the shorter the tail. This is 
true since the distribution of S exhibits exponential decay 
for S >cutoff. 

Conclusions 

Building on our previous work on heavy-tailed behavior in 
combinatorial search (Gomes et al. 1998a), we have shown 
that performance of complete, backtrack-style search al- 
gorithms on hard real-world problems can be greatly en- 
hanced by the addition of randomization combined with a 
rapid restart strategy. Speedups of several orders of magni- 
tude were observed, and some test problem instances were 
solved for the first time by any backtrack-style procedure. 

The success of our approach is based on exploiting the 
heavy-tailed nature of the cost distributions. We saw that 
in most of the domains we found that "outliers" on both 
sides of the median occur with a relatively high frequency. 
Heavy-tails to the right of the median cause the mean so- 
lution time to grow without bounds. Adding cutoffs and 
restarts to the search algorithm, however, both theoreti- 
cally and empirically eliminate the heavy-tail and bound the 
mean. Heavy-tails to the left of the mean can be exploited 
by performing many rapid restarts with short runs, leading 
to a further dramatic decrease in expected solution time. 

We applied the randomization techniques to two state- 
of-the-art search engines for CSP and propositional satisfi- 
ability. We were able to solve hard round-robin scheduling 
instances of up to size 18, when the corresponding deter- 
ministic version could only handle instances up to size 14. 
In the domain of planning as satisfiability, we extended the 
range of logistics problems that could be solved by com- 
plete methods from problems containing 1,141 variables to 
ones involving 2,160 variables (solved with mean cost of 
95 seconds). 

It would be interesting to explore our randomization ap- 
proach in context of other backtrack-style approaches, such 
as dynamic backtracking (Ginsberg 1993). We believe that 
the generality of the approach will lead to further advances 
in planning, scheduling, diagnosis, game-playing, and other 
areas of AI. 
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Abstract 

Stochastic algorithms are among the best methods for solving computationally 
hard search and reasoning problems. The runtime of such procedures can vary sig- 
nificantly from instance to instance and, when using different random seeds, on the 
same instance. One can take advantage of such differences by combining several 
algorithms into a portfolio, and running them in parallel or interleaving them on a 
single processor. We provide a detailed evaluation of the portfolio approach on dis- 
tributions of hard combinatorial search problems. We show under what conditions 
the portfolio approach can have a dramatic computational advantage over the best 
traditional methods. 

1    Introduction 

Randomized algorithms are among the best current algorithms for solving computationally 
hard problem. Most local search methods for solving combinatorial optimization problems 
have a stochastic component, both to generate an initial candidate solution, as well as to 
choose among good local improvements during the search. Complete backtrack-style search 
methods often also use an element of randomness in their value and variable selection in 
case of ties. The runtime of such algorithms varies from run to run on the same problem 
instance, and therefore can be characterized by a probability distribution. The performance 
of algorithms can also vary dramatically among different problem instances. In this case, 
we want to consider the performance profile of the algorithms over a spectrum of problem 
instances. 

Given the diversity in performance profiles among algorithms, various approaches have 
been developed to optimize the overall performance of algorithms, taking into account 
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computational resource constraints. These considerations led to the development of any- 
time algorithms (Dean and Boddy 1988), decision theoretic metareasoning and related 
approaches (Horvitz and Zilberstein 1996; Russell and Norvig 1995). 

Despite the numerous results obtained in these areas, so far they have not been ex- 
ploited much by the traditional communities that study hard computational problems, 
such as operations research (OR), constraint satisfaction (CSP), theorem proving, and the 
experimental algorithms community. In order to bridge this gap, we study the possibil- 
ity of combining algorithms into portfolios in the context of the recent results concerning 
the inherent complexity of computationally hard search and reasoning problems (Gomes 
and Selman 97; Huberman et al. 1997). We analyze the performance profiles of several 
of the state-of-the-art search methods on a distribution of hard search problems encoded 
as Constraint Satisfaction problems (CSP), and as Mixed Integer Programming problems 
(MIP). Our study reveals several interesting problem classes where a portfolio approach 
gives a dramatic improvement in terms of overall performance, compared to a single algo- 
rithm approach. In addition, we also show that a good strategy for designing a portfolio 
is to combine many short runs of the same algorithm. The effectiveness of such portfo- 
lios explains the common practice of "restarts" for stochastic procedures, where the same 
algorithm is run repeatedly with different initial seeds for the random number generator. 

Our analysis also provides some new directions for designing good heuristic algorithmic 
strategies. For example, in our MIP domain, we find that a depth-first search strategy is 
preferable over the more standard best-bound strategy. On a single processor, the best- 
bound strategy is more robust than a depth-first strategy. That is, both the expected 
runtime and variance of best-bound approaches tend to be smaller than the corresponding 
values for depth-first strategies. However, when one has several processors available, e.g., 
in a compute cluster, a collection of depth-first runs outperforms a set of best-bound runs. 
The key is that depth-first is in a sense a more "audacious" strategy. It has a much larger 
variance than the best-bound strategy and has a non-negligable chance of finding solutions 
on very short runs. By running an ensemble of such "risky" strategy, one can outperform 
the more conservative best-bound strategy. In fact, one obtains a smaller expected overall 
runtime and a smaller variance when using a portfolio of depth-first runs. These insights 
suggest that when multiple compute resources are available, a design aiming for high- 
variance search methods, especially with a non-neglible probability of finding solutions 
with short runs, may result in the best overall strategy. 

Overall, our results suggest that the various ideas on flexible computation can indeed 
play a significant role in algorithm design, complementing the more traditional methods 
for solving computationally hard search and reasoning problems. We hope that this work 
will push these ideas closer to practical applications. 
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2    Search procedures and problem domains 

2.1    Randomization of Backtrack Search 

We consider a general technique for adding randomization to complete, systematic, back- 
track search procedures. Such procedures construct a solution incrementally. At each step 
a heuristic is used to select an operation to be applied to a partial solution, such as as- 
signing a value to an unassigned variable. Eventually either a complete solution is found, 
or the algorithm determines that the current partial solution is inconsistent. In the latter 
case, the algorithm backtracks to an earlier point in its search tree. 

If several choices are heuristically determined to be equally good, then a deterministic 
algorithm applies some fixed rule to pick one of the operations, for example, by selecting the 
variables in lexicographic order. The most obvious place to apply randomization, therefore, 
is in this tie-breaking step: if several choices are ranked equally, choose among them at 
random. Even this simple modification can dramatically change the behavior of a search 
algorithm, as we will see below. However, if the heuristic function is particular powerful, 
it may rarely assign more than one choice the highest score. To handle this situation, we 
can introduce a "heuristic equivalence" parameter to the algorithm. Setting the parameter 
to a value H greater than zero means all choices that receive scores within if-percent of 
the highest score are considered equally good. This expands the choice set for random 
tie-breaking. 

With these changes, each run of the backtrack search algorithm on a particular instance 
will differ in the order in which choices are made and potentially in time to solution. We 
should note that introducing randomness in the branching variable selection does not 
affect the completeness of the backtrack search. Some basic bookkeeping ensures that the 
procedures do not revisit any previously explored part of the search space, which means 
that we can still determine inconsistencies, unlike local search methods. The bookkeeping 
mechanism involves some additional information, where for each variable on the stack, we 
keep track of which assignments have been tried so far. 

We randomized the Hog constraint solver engine for our experiments on constraint 
satisfaction formulations. Hog provides a powerful C++ constraint programming library 
(Puget and Leconte 1995). We randomized the first-fail heuristic and various variants of 
the Brelaz selection rule, which has been shown to be effective on graph coloring style 
problem domains (Brelaz 1979). 

2.2    Randomization of Branch-and-Bound 

The standard approach used by the OR community to solve mixed integer programming 
problems (MIP) is branch-and-bound search. First, a linear program (LP) relaxation of the 
problem instance is considered. In such a relaxation, all variables of the problem are treated 
as continuous variables. If the solution to the LP relaxation problem has non-integer values 



for some of the integer variables, we have to branch on one of those variables. This way we 
create two new subproblems (nodes of the search tree), one with the floor of the fractional 
value and one with the ceiling. (For the case of binary (0/1) variables, we create an instance 
with the variable set to 0 and another with the variable set to 1.) The standard heuristic 
for deciding which variable to branch on is based on the degree of infeasibility of variables 
("max infeasibility variable selection"). That is, we select the variable whose non-integer 
part in the solution of the LP relaxation is closest to 0.5. Informally, we pick the variable 
whose value is "least integer". 

Following the strategy of repeatedly fixing integer variables to integer values will lead 
at some point to a subproblem with an overall integer solution (provided we are dealing 
with a feasible problem instance). (Note we call any solution where all the integer variables 
have integer values an "integer solution".) In practice, it often happens that the solution 
of the LP relaxation of a subproblem already is an integer solution, in which case we do 
not have to branch further from this node. 

Once we have found an integer solution, its objective function value can be used to 
prune other nodes in the tree, whose relaxations have worse values. This is because the LP 
relaxation bounds the optimal solution of the problem. For example, for a minimization 
problem, the LP relaxation of a node provides a lower-bound on the best possible integer 
solution. 

A critical issue that determines the performance of branch-and-bound is the way in 
which the next node to expand is selected. The standard approach, in OR, is to use a best- 
bound selection strategy. That is, from the list of nodes (subproblems) to be considered, 
we select the one with the best LP bound. (This approach is analogous to an A* style 
search. The LP relaxation provides an admissible search heuristic.) 

The best-bound node selection strategy is particularly well-suited for reaching an op- 
timal solution (because of the greedy guidance), which has been the traditional focus of 
much of the research in OR. One significant drawback of this approach is that it may take 
a long time before the procedure finds an integer solution, because of the breadth first 
flavor of the search. Also, the approach has serious memory requirements because the full 
fringe of the tree has to be stored. 

Given problems that have a difficult feasibility part, the best-bound approach may 
take too long before reaching an integer solution. (Note that an integer solution is required 
before any nodes can be pruned.) In our experiments, we therefore also considered a depth- 
first node selection strategy. Such a strategy often quickly reaches an integer solution, but 
may take longer to produce an overall optimal value. 

In our experiments, we used a state-of-the-art MIP programming package, called CPLEX. 
CPLEX provides a set of libraries that allows one to customize the branch-and-bound 
search strategy. For example, one can vary node selection, variable selection, variable set- 
ting strategies, the LP solver, etc. We used the default settings for the LP solver, which 
is for the first node primal-simplex and for subsequent nodes dual-simplex. We modified 
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the search strategies to include some level of randomization. We randomized the variable 
selection strategy by introducing noise in the ranking of the variables, based on maximum 
infeasibility. Note that the completeness of the search method is maintained. We have 
experimented with several other randomization strategies. For example, in CPLEX one 
can assign an apriori variable ranking, which is fixed throughout branch-and-bound. We 
experimented by randomizing this apriori ranking. We found, however, that the dynamic 
randomized variable selection strategy, as described above, is more effective. 

2.3    Problem Domains 

In order to study the performance profile of different search strategies, we derive generic 
distributions of hard combinatorial search problems from the domain of finite algebra. In 
particular, we consider the quasigroup domain. A quasigroup is an ordered pair (Q,-), 
where Q is a set and (•) is a binary operation on Q such that the equations a ■ x = b 
and y ■ a = b are uniquely solvable for every pair of elements a, b in Q. The order N of 
the quasigroup is the cardinality of the set Q. The best way to understand the structure 
of a quasigroup is to consider its N by N multiplication table as defined by its binary 
operation. The constraints on a quasigroup are such that its multiplication table defines 
a Latin square. This means that in each row of the table, each element of the set Q 
occurs exactly once; similarly, in each column, each element occurs exactly once (Denes 
and Keedwell 1974). 

An incomplete or partial latin square P is a partially filled N by N table such that 
no symbol occurs twice in a row or a column. The Quasigroup Completion Problem is 
the problem of determining whether the remaining entries of the table can be filled in 
such a way that we obtain a complete latin square, that is, a full multiplication table of 
a quasigroup. We view the pre-assigned values of the latin square as a perturbation to 
the original problem of finding an arbitrary latin square. Another way to look at these 
pre-assigned values is as a set of additional problem constraints to the basic structure of 
the quasigroup. 

There is a natural formulation of the problem as a Constraint Satisfaction Problem. 
We have a variable for each of the N2 entries in the multiplication table of the quasigroup, 
and we use constraints to capture the requirement of having no repeated values in any 
row or column. All variables have the same domain, namely the set of elements Q of the 
quasigroup. Pre-assigned values are captured by fixing the value of some of the variables. 

Colbourn (1983) showed the quasigroup completion problem to be NP-complete. In 
previous work, we identified a clear phase transition phenomenon for the quasigroup com- 
pletion problem (Gomes and Selman 1Ö97). See Figure 1. From the figures, we observe 
that the costs peak roughly around the same ratio (approximately 42% pre-assignment) 
for different values of N. (Each data point is generated using 1,000 problem instances. 
The pre-assigned values were randomly generated.) This phase transition with the corre- 
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sponding cost profile allows us to tune the difficulty of our problem class by varying the 
percentage of pre-assigned values. 

An interesting application area of latin squares is the design of statistical experiments. 
The purpose of latin squares is to eliminate the effect of certain systematic dependency 
among the data (Denes and Keedwell 1974). Another interesting application is in schedul- 
ing and timetabling. For example, latin squares are useful in determining intricate sched- 
ules involving pairwise meetings among the members of a group (Anderson 1985). The 
natural perturbation of this problem is the problem of completing a schedule given a set 
of pre-assigned meetings. 

The quasigroup domain has also been extensively used in the area of automated theorem 
proving. In this community, the main interest in this domain has been driven by questions 
regarding the existence and nonexistence of quasigroups with additional mathematical 
properties (Fujita et al. 1993; Lam et al. 1989). 
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Figure 1: (a) Cost profile, and (b) phase transition for the quasigroup completion problem 
(up to order 15). 

In our experiments we were also interested in problems that combine a hard combi- 
natorial component with numerical information. Integrating numerical information into 
standard AI formalism is becoming of increasing importance. For example, in planning, 
one would like to incorporate resource constraints or a measure of overall plan quality. 
We considered examples based on logistics planning problems, formulated as mixed integer 
programming problems. These formulations extend the traditional AI planning approach 
by combining the hard constraints of the planning operators, initial state, and goal state, 
with a series of soft contraints capturing resource utilization. For example, one can require 
that trucks are loaded as close as possible to their maximum capacity. Such formulations 
have been shown to be very promising for modeling AI planning problems (Kautz and 
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Walser 1999; Vossen et al. 1999). Experimentation with the CPLEX MIP solver showed 
that these problem instances are characterized by a non-trivial feasibility component.1 

3    Computational Cost Profiles 
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Figure 2: Cost profiles for the quasigroup completion problem for a range of search heuris- 
tics. 

We start by considering the computational cost of solving the quasigroup completion 
problem for different search strategies. As our basic search procedure, we use a complete 
backtrack-style search method. The performance of such procedures can vary dramatically 
depending on the way one selects the next variable to branch on (the "variable selection 
strategy") and in what order the possible values are assigned to a variable (the "value 
selection strategy"). There is a large body of work in both the CSP and OR communities 
exploring different search strategies. 

One of the most effective strategies is the so-called First-Fail heuristic.2 In the First-Fail 
heuristic, the next variable to branch on is the one with the smallest remaining domain (i.e., 
in choosing a value for the variable during the backtrack search, the search procedure has 
the fewest possible options left to explore — leading to the smallest branching factor). We 
consider a popular extension of the First-Fail heuristic, called the Brelaz heuristics (Brelaz 
1979).   The Brelaz heuristic was originally introduced for graph coloring procedures.   It 

1We thank Henry Kautz and Joachim Walser for providing us with MIP formulations of the logistic 
planning problems. 

2It's really a prerequisit for any reasonable bactrack-style search method. In theorem proving and 
Boolean satisfiability, the rule corresponds to the powerful unit-propagation heuristic. 
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provides one of the most powerful graph-coloring and general CSP heuristics (Trick and 
Johnson 1996). 

The Brelaz heuristic specifies a way for breaking ties in the First-fail rule: If two 
variables have equally small remaining domains, the Brelaz heuristic proposes to select 
the variable that shares constraints with the largest number of the remaining unassigned 
variables. A natural variation on this tie-breaking rule is what we call the "reverse Brelaz" 
heuristic, in which preference is given to the variable that shares constraints with the 
smallest number of unassigned variables. Any remaining ties after the (reverse) Brelaz rule 
are resolved randomly. One final issue left to specify in our search procedure is the order 
in which the values are assigned to a variable. In the standard Brelaz, value assignment 
is done in lexicographical order (i.e., systematic). In our experiments, we consider four 
stragies: 

• Brelaz-S — Brelaz with systematic value selection, 

• Brelaz-R — Brelaz with random value selection, 

• R-Brelaz-S — Reverse Brelaz with systematic value selection, and 

• R-Brelaz-R — Reverse Brelaz with random value selection. 

Figure 2 shows the performance profile of our four strategies on an instance of the 
quasigroup completion problem (order 20, 10% preassigned). Each curve gives the cumu- 
lative distribution obtained for each strategy by solving the problem 10,000 times. The 
cost (horizontal axis) is measured in number of backtracks, which is directly proportional 
to the total runtime of our strategies. For example, the figure shows that R-Brelaz-R, 
finished roughly 80% of the 10,000 runs in 15 backtracks or less. The left panel of the 
figure shows the overall profile; the right panel gives the initial part of the profile. 

Note that that R-Brelaz-R dominates R-Brelaz-S over the full profile. In other words, 
the cumulative relative frequency curve for R-Brelaz-R lies above that of R-Brelaz-S at 
every point along the x-axis. Brelaz-S, in turn, strictly dominates Brelaz-R. 

From the perspective of combining algorithms, what is most interesting, however, is 
that in the initial part of the profile (see right panel of Figure 2), Brelaz-S dominates 
R-Brelaz-R. Intuitively, Brelaz-S is better than R-Brelaz-R at finding solutions quickly. 
However, in the latter part of the cumulative distribution, R-Brelaz-R dominates Brelaz-S. 
In a sense, R-Brelaz-R gets relatively better when the search gets harder. As we will see 
in the next section, we can exploit this in our algorithm portfolio design. 

In Figure 3, we compare the runtime profile of a depth-first strategy with a best- 
bound strategy to solve a hard feasibility problem in the logistics domain, formulated as a 
mixed integer programming problem. The search is terminated when an optimal or near- 
optimal (<10% from optimal) solution is found, but without the requirement of proving 
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Figure 3:  Cost profiles for a logistics planning problems for depth-first and best-bound 
search strategies. 

optimality.3 The figure shows the cumulative distribution of solution time (in number 
of expanded nodes). For example, with 500 or less nodes, the depth-first search finds a 
solution on approximately 50% of the runs. Each run had a time limit of 5000 seconds. As 
we see from the figure, the depth-first search initially outperforms the best-bound search. 
However, after more than 1500 node expansions, the best-bound becomes more effective. 
For example, best-bound finds a solution on approximately 75% of the runs with 2000 
node expansions or less. In contrast, depth-first search can only find solutions on 55% 
of the runs with the same number of node expansions. This data is consistent with the 
observation above that best-bound may take some time to find an intial integer solution. 
However, once such an initial integer solution is found, best-bound becomes more effective. 

We now consider the runtime distributions more closely. Figure 4 gives a log-log plot of 
the complement of the cumulative distribution for the depth-first procedure. For example, 
from this plot, we see that after 10,000 nodes, approximately 30% of the runs have not yet 
found the solution. The figure shows a near linear behavior over several orders of mag- 
nitude. This is an indication of so-called heavy-tailed behavior which often characterizes 

3One should be careful to distinguish between finding an optimal integer solution and proving that this 
is indeed the optimal solution. Our interest lies in problems where the proof of optimality can be beyond 
reach of any procedure; however, we can often still find good quality solution. 
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Figure 4: Heavy-tailed behavior of depth-first search. 

complete search methods (Gomes et al. 1997). In a sense, the time till solution behaves in 
a very erratic manner: very long runs occur much more frequently than one might expect. 
Best-bound also appears to exhibit heavy-tailed behavior, but less dramaticly than that 
for depth-first search. 

This erratic search behavior is related to the feasibility part of the search. Even though 
the main focus of our study was the study of the runtime distributions for feasibility, pre- 
liminary results on the characterization of the runtime distributions for proving optimality 
indicate that such distributions do not appear to be heavy-tailed. We conjecture that 
indeed proving optimality does not produce heavy-tails since the entire search space has 
to be explored. This is consistent with the results by Frost et al. (1997) on constraint 
satisfaction problems. They show that standard (not heavy-tailed) distributions, such as 
the Weibull and log-normal distribution, underly the cost of proving inconsistency. Further 
experimentation is required. 

In the next section we show how the large variance in search methods, as characterized 
by heavy-tailed behavior, can be exploited by combining algorithms into portfolios or 
running multiple copies of the same algorithm. 

48 



4    Portfolio Design 

A portfolio of algorithms is a collection of different algorithms and/or different copies of the 
same algorithm running on different processors (Gomes and Selman 97; Huberman et al. 
1997). Here we consider the case of independent runs without interprocess communication.4 

We are considering Las Vegas type algorithms, i.e., stochastic algorithms that always 
return a model satisfying the constraints of the search problem or demonstrate that no 
such model exists (Motwani and Raghavan 1995). The computational cost of the portfolio 
is therefore a random variable. The expected computational cost of the portfolio is simply 
the expected value of the random variable associated with the portfolio and its standard 
deviation is a measure of the "dispersion" of the computational cost obtained when using 
the portfolio of algorithms. In this sense, the standard deviation is a measure of the risk 
inherent to the portfolio. 

The main motivation to combine different algorithms into a portfolio is to improve on 
the performance of the component algorithms, mainly in terms of expected computational 
cost but also in terms of the overall risk. As we will show, some portfolios are strictly 
preferrable to others, in the sense that they provide a lower risk and also a lower expected 
computational cost. However, in some cases, we cannot identify any portfolio within a 
set that is the best, both in terms of expected value and risk. This set of portfolios 
corresponds to the efficient set or efficient frontier, following terminology used in the 
theory of mathematical finance. Within this set, in order to minimize the risk, one has to 
deteriorate the expected value or, in order to improve the expected value of the portfolio, 
one has to increase the risk. 

In this context, where we characterize a portfolio in terms of its mean and variance, 
combining different algorithms into a portfolio only makes sense if they exhibit different 
probability profiles and none of them dominates the others over the whole spectrum of 
problem instances. An algorithm A dominates algorithm B if the cumulative frequency 
distribution of algorithm A lies above the cumulative frequency distribution of algorithm 
B for all points.5 

Let us consider a set of two algorithms, algorithm 1 and algorithm 2. Let us associate 
a random variable with each algorithm: Al — the number of backtracks that algorithm 1 
takes to find the first solution or to prove that a solution does not exist; A2 — the number 
of backtracks that algorithm 2 takes to find the first solution or to prove that a solution 
does not exist. 

Let us assume that we have N processors and that we design a portfolio using nl 
processors with algorithm 1 and n2 processors with algorithm 2. So, N = nl + n2. Let us 
define the random variable associated with this portfolio: X — the number of backtracks 

4One can also consider the somewhat more general case of interleaving the execution of algorithms on 
one or more processors. 

5Another criterion for combining algorithms into a portfolio is given by the algorithm covariance. 
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that the portfolio takes to find the first solution or to prove that a solution does not exist. 
The probability distribution of A" is a "weighted" probability distribution of the prob- 

ability distributions of algorithm 1 and algorithm 2. More precisely, the probability that 
X = x is given by the probability that one processor takes exactly x backtracks and all 
the other ones take x or more backtracks to find a solution or to prove that a solution does 
not exist. 

Let us assume that we have N processors and our portfolio consists of N copies of 
algorithm 1. In this case, P[X=x] is given by the probability that one processor take 
exactly x backtracks and the other TV -1 take more than x backtracks, plus the probability 
that two processors take exactly x backtracks and the other (N-2) one takes more than x 
backtracks, etc., plus the probability that all the processors take exactly x backtracks to 
find a solution or to prove that a solution does not exist. The following expression gives 
the probability function for such a portfolio. 

Given N processors, and let nl = N and n2 = 0. P[X=x] is given by 

£ ( ^) P\Al = x]*P[Al > z]<"-*> 

To consider two algorithms, we have to generalize the above expression, considering 
that X = x can occur just within the processors that use algorithm 1, or just within the 
processors that use algorithm 2 or within both. As a result, the probability function for a 
portfolio with two algorithms, is given by the following expression: 

Given JV processors, nl such that 0 <= nl <= N, and n2 = N - nl,'P[X=x] is given 
by 

EZ(n}) P[A1 = xfP[Al > *]<»i-«'>x 
i=li'=0 \  l 

P[A2 = xfP[A2 > x]<n2-*")] 

The value of i" is given by i" = i - i\ and the term in the summation is 0 whenever 
i" < 0 or i" > nl. 

In the case of a portfolio involving two algorithms the probability distribution of the 
portfolio is a summation of a product of two expressions, each one corresponding to one 
algorithm. In the case of a portfolio comprising M different algorithms, this probability 
function can be easily generalized, by having a summation of a product of M expressions, 
each corresponding to an algorithm. 

Once we derive the probability distribution for the random variable associated with the 
portfolio, the calculation of the its expected value and standard deviation is straightforward. 
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5    Empirical Results for Portfolio Design 

5.1    Constraint Satisfaction 
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Figure 5: Portfolio combining Brelaz and R-Brelaz-R for solving a quasigroup completion 
instance using two (a), five (b), ten (c), and twenty processors (d). 

We now derive different portfolios based on the runtime profiles given in Figure 2 
(Section 3). Note that this is an interesting case from the portfolio design perspective 
because Brelaz-S dominates in the initial part of the distribution, whereas R-Brelaz-R 
dominates in the latter part. 

Figure 5 gives the expected runtime values and the standard deviations of portfolios 
for 2, 5, 10, and 20 processors. (Results derived using the formula given above.) We see 
that for 2 processors (Figure 5(a)), the portfolio consisting of two copies of R-Brelaz-R has 
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the lowest expected runtime and the lowest standard deviation. This portfolio dominates 
the two other 2-processox portfolios. 

When we increase the number of processors, we observe an interesting shift in the 
optimal portfolio mix. For example, for 5 processors, using 2 copies of Brelaz-S gives a 
better expected value at only a slight increase in the risk (standard deviation), compared 
to zero Brelaz-S. In the case of five processors, the efficient set comprises four portfolios: 
one with 5 R-Brelaz-R, one with 1 Brelaz-S and 4 R-Brelaz-R, one with 2 Brelaz-S and 
3 R-Brelaz-R, and one with 3 Brelaz-S and 2 R-Brelaz-R. There is no clear dominant 
portfolio among those three. In this set, one has to trade a decrease in expected runtime 
for an increase in variance: in order to minimize the expected runtime, the best portfolio 
is 3 Brelaz-S and 2 R-Brelaz-R; in order to minimize the risk (variance) the best portfolio 
corresponds to 5 R-Brelaz-R. 

The situation changes even more dramatically if we increase the number of processors. 
In particular, with 20 processors (Figure 5d), the best portfolio corresponds to using copies 
of the Brelaz-S strategy on all processors, obtaining the lowest expected value and the 
lowest standard deviation. The intuitive explanation for this is that by running many 
copies of Brelaz-S, we have a good chance that at least one of them will find a solution 
quickly This result is consistent with the common use of "random restarts" in stochastic 
search methods in practical applications. Our portfolio analysis also gives the somewhat 
counter-intuitive result that, even when given two stochastic algorithms, where neither 
strictly dominates the other, running multiple copies of a single algorithm is preferrable to 
a mix of algorithms. 

5.2    Mixed Integer Programming 

In section 3 we have shown that there are several interesting trade-offs between depth- 
first branch-and-bound versus best-bound branch-and-bound. In particular, depth-first 
search performs better early on in the search, whereas best-bound is better on longer runs. 
Again, as with constraint satisfaction methods in the quasigroup domain, we will show how 
a portfolio approach can be used to effectively combine the best features of each search 
strategy. 

In figure 6, we consider a range of portfolios for solving our feasibility problem for the 
logistics domain, considering situations from one processor to twenty processors (the same 
instance as the one considered in figure 3). The plot gives the expected runtime and stan- 
dard deviation for different ways of combining a branch-and-bound search procedure using 
depth-first search and best-bound search. From this plot we see that the best choice, when 
using a single processor, in terms of minimizing expected runtime and standard devia- 
tion, corresponds to running branch-and-bound with best-bound. Best-bound remains the 
best strategy when we consider two processors, i.e., the best portfolio consists of running 
branch-and-bound with best-bound on both processors.   The expected runtime of such a 
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Figure 6: A range of portfolios for the MIP formulation of logistics planning (expected run 
time). 

strategy is approximately 700 nodes with a standard deviation of around 750. Contrast 
these values, for example, with the much higher values corresponding to the strategy of 
running branch-and-bound with depth-first on both processors (average 4397 and standard 
deviation of 14112). 

The mixing strategy changes as we increase the number of processors or the amount of 
interleaving. For example, for the case of ten processors, the best strategies are 9DF/1BB 
and 10DF/0BB. (We use the notation xDF/yBB to mean running x depth-first processes 
and y best-bound processes.) These strategies give both a low expected runtime and a low 
standard deviation. There is no clear dominant strategy among those two (efficient set). 
In this set, one has to trade a decrease iri expected runtime for an increase in variance: 
in order to minimize the expected runtime, the best portfolio is 10DF/0BB; in order to 
minimize the risk (variance) the best portfolio corresponds to 9DF/1BB. It is interesting 
to observe that, in the case of 20 processors, the best strategy corresponds to only using 
depth-first search (i.e., 20DF/0BB). 

Figure 7 shows the total computational cost for the different portfolios. In other words, 
rather than just considering the time for solution as in figure 6, figure 7 factors in the 
number of processors. 

Figure 8, panel (a), shows that the reduction in expected runtime decreases at a very 
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Figure 7: A range of portfolios for the MIP formulation of logistics planning (expected 
total cost). 

slow rate, for more than 10 processors. In fact, figure 8, panel (b), shows that, the most 
cost-effective solution6 is obtained for a 10 processor portfolio. 

6    Restart Strategies 

A key intuition behind the effectiveness of the portfolio approach is that it takes advan- 
tage of relatively short runs. Having more processors available increases the probability 
of encountering a relatively short run. One can simulate a multi-processor approach by 
running several copies of the search methods interleaved on a single processor. A related 
strategy is to use a restart strategy, where one periodically restarts the randomized search 
with a new random seed. As discussed in section 3, backtrack search cost profiles are of- 
ten heavy-tailed, with runtimes varying over several orders of magnitude on different runs 
of the same instance. Restart strategies reduce the extreme variance that is inherent in 
backtrack search procedures. In this section we formalize the restart strategy of a com- 
plete randomized backtrack search and we present results for the restart strategy applied 
to depth-first and best-bound. For related work on restarts, see e.g., Aldous and Vazirani 
1994; Alt et al. 1996; Ertel 1991; Luby et al. 1993; and Selman and Kirkpatrick 1996.) 

6We consider the total cost, i.e, the time to find a solution times the number of processors 
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Figure 8: Expected time (a) and expected total cost (b) of optimal portfolio for different 
numbers of processors. 

6.1    A Formal Characterization of Restarts 

Given a randomized backtrack search procedure, let us consider the number of choice points 
(or backtracks) performed by such a procedure. We introduce random variable B, such 
that, 

B is the number of choice points that the backtrack search procedure takes to 
find a solution or prove that it does not exist. i? = {1,2, • • •} 

Now consider a Rapid Randomized Restarts (RRR) strategy for running our backtrack 
procedure: run the procedure up to a fixed number of choice points c (the cutoff); if the 
procedure finds a solution or proves that no solution exists, then RRR has also found 
a solution (or proven that no solution exists) and stops; otherwise restart the backtrack 
procedure from the beginning (using an independent random seed) for another c decision 
events, and so on. We associate with RRR the random variable S, such that, 

S is the number of choice points that RRR takes to find a solution or prove 
that no solution exists. S = {1,2, • • •} 

Let's define a "run", as the execution of the randomized backtrack search method for 
up to c steps. We now define the random variable R, such that, 

R is the number of runs executed by RRR. 
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Figure 9: B — number of choice points searched by the randomized backtrack procedure 
(running with cutoff c); S — number of choice points searched by RRR; R — number of 
runs executed by RRR. In this case, a solution was found in the third run (R = 3), with 
a total of 2c + m choice points (S = 2c + m). The third run of the randomized backtrack 
search method took m < c choice points. 

Figure 9 illustrates how the different random variables relate to each other. The runs 
executed by RRR are independent (no information is carried over between runs, and each 
run uses a new random seed) and therefore can be seen as a sequence of Bernoulli trials, in 
which the success of a trial corresponds to finding a solution (or proving that one does not 
exist) during a run; its probability is given by P[B< c). Therefore, R follows a geometric 
distribution with parameter p = P[B < c]. The probability of the tail of S, P[S > s], 
corresponds to the probability of not finding the solution in the first [s/cj runs of RRR, 
and finding it with more than (s mod c) choice points in the next run. We obtain the 
following expression: 

P[S >s} = P[B > c]Ls/cJ P[B > s mod c] (1) 

We note that the distribution of S is not heavy-tailed since its tail exhibits exponential 
decay: 

P[S >s}< P[B > cp/cJ = P[R > [s/c\] (2) 
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In words, the tail of S is limited from above by the tail of R. Since R follows a geometric 
distribution, it has finite moments, and therefore so does S.7 

The full distribution of S is given by the following expression: 

'  P[B > cp/cJ P[B = s mod c]   s mod c / 0 
P[S = s] = | (4) 

(  P[B > c]l*/cJ-1 P[s = c] otherwise 

Note that the second branch of (4) corresponds to the case in which the total number 
of choice points executed by strategy S is a multiple of c. This situation occurs when the 
solution is found when the cutoff c is reached. 

Based on the distribution of B, we can determine a cutoff, c, that minimizes the ex- 
pected runtime of S. In our experiments, we determined the cutoff for the restart strategy 
(RRR) based on the empirical distribution of B, which was computed by performing 10,000 
runs of the search methods, on the same instance, with a very high cutoff. 

6.2    Empirical Results for Restart Strategies 

In Figure 10, we show the result of applying a strategy of fixed-length short runs ("restarts") 
of a randomized backtrack procedure. Figure 10(a) shows the results on a quasigroup com- 
pletion instance. Without restarts and given a total of 300 backtracks, we have a failure 
rate of around 70%. Using restarts (every 4 backtracks), this failure rate drops to around 
0.01%. The figure also shows a clear downward curve for the log-log plot of the complement- 
to-one of the cumulative distribution of the restart strategy, which is an indication that 
the heavy-tailed nature of the original cost distribution has disappeared. 

Figure 11 shows the effect of different cutoff values in terms of the restart strategy 
on the logistics planning problem. The left panel corresponds to depth-first search, while 
the right panel corresponds to best-bound. Even though both panels reveal the existence 
of optimal cutoff values, one can observe that choosing the optimal cutoff is much more 
crucial for the depth-first search strategy than for the best-bound strategy. Such dramatic 
speed up obtained when using the optimal cutoff value with depth-first search is due to 

7Heavy-tailed distributions are characterized by tails that have a power-law (polynomial) decay, i.e., 
distributions which asymptotically have "heavy tails" — also called tails of the Pareto-Levy form, viz. 

P[X > x] ~ Cx'a,    x > 0 (3) 

where 0 < a < 2 and C > 0 are constants. Some of the moments of heavy-tailed distributions are infinite 
(e.g., some heavy-tailed distributions have infinite mean and infinite variance, others just infinite variance, 
etc). 
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Figure 11: Expected cost as a function of restart cutoff for (a) depth-first and (b) branch- 
and-bound. 

the strong heavy-tailed nature that characterizes depth-first search. In fact, that is also 
the reason why, as we increase the number of processors, it is worth running depth-first 
search on more processors. Intuitively, the chance of a short run with depth-first increases 
considerably. 
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7    Conclusions 

We have provided results showing the computational advantage of a portfolio approach for 
dealing with hard combinatorial search and reasoning problems. Our results considered two 
predominant representation paradigms for combinatorial problems: Constraint Satisfaction 
formulations and Mixed Integer Programming formulations. Our analysis shows that one 
can exploit the large variance in certain randomized search methods by running them 
in a portfolio strategy and obtaining a superior overall performance, compared to more 
conservative algorithmic strategies. The portfolio approach appears particularly well-suited 
for the rapidly emerging compute-cluster paradigm. As our experiments show, the portfolio 
approach suggests new randomized search strategies. In particular, there is an advantage 
in optimizing the chance of finding a solution early on in a run, even though, on a single 
processor, this may lead to a larger overall expected runtime than that of other more 
traditional search techniques. Finally, if only a single processor is available, random restarts 
of a stochastic method is often the optimal strategy. These results suggest that ideas 
developed in the flexible computation community can play a significant role in practical 
algorithm design. 
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